Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các biến dạng chính xác biên giới và các đối xứng toàn cục
Tóm tắt
Chúng tôi nghiên cứu vấn đề tìm kiếm các biến dạng chính xác biên giới của lý thuyết trường siêu đồng chuẩn với \( \mathcal{N} = 1 \) trong bốn chiều. Chúng tôi tìm thấy rằng cách duy nhất một toán tử chiral biên giới có thể trở thành không chính xác là khi nó kết hợp với một multiplet dòng giữ gìn. Ngoài ra, chúng tôi phát hiện ra rằng không gian các biến dạng chính xác biên giới, còn được gọi là "không gian đồng chuẩn", là thương số của không gian các cặp biên giới bởi nhóm đối xứng toàn cục liên tục được phức hóa. Thực tế này giải thích tại sao các biến dạng chính xác biên giới xuất hiện phổ biến trong các lý thuyết \( \mathcal{N} = 1 \). Phương pháp của chúng tôi biến vấn đề đếm các toán tử chính xác biên giới thành một vấn đề trong lý thuyết nhóm, đồng thời mở rộng và đơn giản hóa đáng kể phân tích trước đó của Leigh và Strassler. Chúng tôi cũng sẽ thảo luận ngắn gọn cách áp dụng phân tích của chúng tôi cho các lý thuyết \( \mathcal{N} = 2 \) trong ba chiều.
Từ khóa
#Biến dạng chính xác #lý thuyết trường siêu đồng chuẩn #đối xứng toàn cục #lý thuyết nhómTài liệu tham khảo
A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [SPIRES].
L.J. Dixon, Some World Sheet Properties of Superstring Compactifications, on Orbifolds and Otherwise, Lectures given at the ICTP Summer Workshop in High Energy Phsyics and Cosmology, Trieste, Italy, Jun 29 – Aug 7 (1987), in Superstrings, unified theories and cosmology, World Scientific, Singapore (1988).
N. Seiberg, Observations on the Moduli Space of Superconformal Field Theories, Nucl. Phys. B 303 (1988) 286 [SPIRES].
D. Kutasov, Geometry on the space of conformal field theories and contact terms, Phys. Lett. B 220 (1989) 153 [SPIRES].
S. Cecotti, S. Ferrara and L. Girardello, A topological formula for the Kähler potential of 4D N = 1, N = 2 strings and its implications for the moduli problem, Phys. Lett. B 213 (1988) 443 [SPIRES].
S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A 4 (1989) 2475 [SPIRES].
L.J. Dixon, V. Kaplunovsky and J. Louis, On Effective Field Theories Describing (2,2) Vacua of the Heterotic String, Nucl. Phys. B 329 (1990) 27 [SPIRES].
A. Strominger, Special geometry, Commun. Math. Phys. 133 (1990) 163 [SPIRES].
R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [SPIRES].
O. Aharony, B. Kol and S. Yankielowicz, On exactly marginal deformations of N = 4 SYM and type IIB supergravity on AdS 5 × S 5, JHEP 06 (2002) 039 [hep-th/0205090] [SPIRES].
B. Kol, On conformal deformations, JHEP 09 (2002) 046 [hep-th/0205141] [SPIRES].
Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [SPIRES].
E. Barnes, E. Gorbatov, K.A. Intriligator and J. Wright, Current correlators and AdS/CFT geometry, Nucl. Phys. B 732 (2006) 89 [hep-th/0507146] [SPIRES].
V. Asnin, On metric geometry of conformal moduli spaces of four- dimensional superconformal theories, arXiv:0912.2529 [SPIRES].
B. Kol, unpublished notes.
P.C. Argyres, K.A. Intriligator, R.G. Leigh and M.J. Strassler, On inherited duality in N = 1 D = 4 supersymmetric gauge theories, JHEP 04 (2000) 029 [hep-th/9910250] [SPIRES].
A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [SPIRES].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [SPIRES].
N. Seiberg, Naturalness Versus Supersymmetric Non-renormalization Theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [SPIRES].
P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [SPIRES].
P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [SPIRES].
K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [SPIRES].
C. Lucchesi and G. Zoupanos, All-order Finiteness in N = 1 SYM Theories: Criteria and Applications, Fortschr. Phys. 45 (1997) 129 [hep-ph/9604216] [SPIRES].
D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [SPIRES].
N. Akerblom, C. Sämann and M. Wolf, Marginal Deformations and 3-Algebra Structures, Nucl. Phys. B 826 (2010) 456 [arXiv:0906.1705] [SPIRES].
M.S. Bianchi, S. Penati and M. Siani, Infrared stability of ABJ-like theories, JHEP 01 (2010) 080 [arXiv:0910.5200] [SPIRES].
M.S. Bianchi, S. Penati and M. Siani, Infrared Stability of N = 2 Chern-Simons Matter Theories, JHEP 05 (2010) 106 [arXiv:0912.4282] [SPIRES].
C.-M. Chang and X. Yin, Families of Conformal Fixed Points of N = 2 Chern-Simons- Matter Theories, JHEP 05 (2010) 108 [1002.0568] [SPIRES].
M.J. Strassler, On renormalization group flows and exactly marginal operators in three dimensions, hep-th/9810223 [SPIRES].
S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [SPIRES].
N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].
I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].
S. Benvenuti and A. Hanany, Conformal manifolds for the conifold and other toric field theories, JHEP 08 (2005) 024 [hep-th/0502043] [SPIRES].
J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [SPIRES].
D. Kutasov, New results on the ’a-theorem’ in four dimensional supersymmetric field theory, hep-th/0312098 [SPIRES].
E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4D a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [SPIRES].
D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].
K. Papadodimas, Topological Anti-Topological Fusion in Four-Dimensional Superconformal Field Theories, arXiv:0910.4963 [SPIRES].
M. Flato and C. Fronsdal, Representations of conformal supersymmetry, Lett. Math. Phys. 8 (1984) 159 [SPIRES].
V.K. Dobrev and V.B. Petkova, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett. B 162 (1985) 127 [SPIRES].
H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [SPIRES].
