Exact Gerstenhaber algebras and Lie bialgebroids

Yvette Kosmann–Schwarzbach1
1Centre de Mathématiques, URA 169 du CNRS, Ecole Polytechnique, F-91128, Palaiseau Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bhaskara, K. H. and Viswanath, K.: Calculus on Poisson manifolds,Bull. London Math. Soc. 20 (1988), 68?72.

Coste, A., Dazord, P., and Weinstein, A.: Groupoïdes symplectiques,Publ. Dép. Math. Univ. Lyon I, 2A (1987).

Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation,Soviet. Math. Dokl. 27(1) (1983), 68?71. (In Russian,Dokl. Akad. Nauk SSSR 268(2) (1983).)

Drinfeld, V. G.: Quantum groups,Proc. Internat. Congr. Math. (Berkeley, 1986), Vol. 1, Amer. Math. Soc., Providence, 1987, pp. 798?820.

Gelfand, I. M. and Dorfman, I. Ya.: Hamiltonian operators and the classical Yang-Baxter equation,Funct. Anal. Appl. 16(4) (1982), 241?248.

Gerstenhaber, M.: The cohomology structure of an associative ring,Ann. Math. 78 (1963), 267?288.

Gerstenhaber, M. and Schack, S. D.: Algebraic cohomology and deformation theory, in M. Hazewinkel and M. Gerstenhaber (eds),Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht, 1988, pp. 11?264.

Gerstenhaber, M. and Schack, S. D.: Algebras, bialgebras, quantum groups and algebraic deformations, in M. Gerstenhaber and J. Stasheff (eds),Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemporary Mathematics 134, Amer. Math. Soc., Providence, 1992, pp. 51?92.

Getzler, E.: Batalin-Vilkovisky algebras and two-dimensional topological field theories,Comm. Math. Phys. 159 (1994), 265?285.

Huebschmann, J.: Poisson cohomology and quantization,J. Reine Angew. Math. 408 (1990), 57?113.

Karasev, M. V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets,Math. USSR Izv. 28(3) (1987), 497?527. (In Russian,Izvestyia 50 (1986).)

Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in M. Gotay, J. E. Marsden, and V. Moncrief (eds),Mathematical Aspects of Classical Field Theory, Contemporary Mathematics 132, Amer. Math. Soc., Providence, 1992, pp. 459?489.

Kosmann-Schwarzbach, Y. and Magri, F.: Poisson-Nijenhuis structures,Ann. Inst. Henri Poincaré A 53(1) (1990), 35?81.

Kosmann-Schwarzbach, Y., and Magri, F.: Dualization and deformation of Lie brackets on Poisson manifolds, in J. Janyska and D. Krupka (eds),Differential Geometry and its Applications (Brno, 1989), World Scientific, Singapore, 1990, pp. 79?84.

Koszul, J.-L.: Crochet de Schouten-Nijennuis et cohomologie, in'Elie Carton et les mathématiques d'aujourd'hui', Astérisque, n?hors série, Soc. Math. Fr., 1985, pp. 257?271.

Krasilshchik, I.: Schouten brackets and canonical algebras, inGlobal Analysis III, Lecture Notes Math. 1334, Springer-Verlag, Berlin, 1988, pp. 79?110.

Krasilshchik, I.: Supercanonical algebras and Schouten brackets,Mat. Zametki 49 (1991), 70?76.

Lian, B. H. and Zuckerman, G. J.: New perspectives on the BRST-algebraic structure of string theory,Comm. Math. Phys. 154 (1993), 613?646.

Mackenzie, K.:Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lect. Notes Series 124, Cambridge University Press, Cambridge, 1987.

Mackenzie, K. C. H. and Ping Xu: Lie bialgebroids and Poisson groupoids,Duke Math. J. 73 (1994), 415?452.

Magri, F. and Morosi, C.: A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S 19 (1984), University of Milan.

Palais, R. S.:The Cohomology of Lie Rings, Proc. Symp. Pure Math. 3, Amer. Math. Soc., Providence, 1961, pp. 130?137.

Penkava, M. and Schwarz, A.: On some algebraic structures arising in string theory, Preprint hep-tn/912071.

Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux,C.R. Acad. Sci. Paris, Série A 264 (1967), 245?248.

Roger, C.: Algèbres de Lie graduées et quantification, in P. Donatoet al. (eds),Symplectic Geometry and Mathematical Physics, Progress in Mathematics 99, Birkhäuser, Boston, 1991, pp. 374?421.

Vaisman, I.:Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics 118, Birkhäuser, Boston, 1994.

Vaisman, I.: Poisson-Nijenhuis structures revisited,Rendiconti Sem. Mat. Torino 52 (1994).

Weinstein, A.: Some remarks on dressing transformations,J. Fac. Sci. Univ. Tokyo, IA, Math. 35 (1988), 163?167.

Zwiebach, B.: Closed string theory: an introduction, Preprint hep-th/9305026.