Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Bức xạ Bremsstrahlung chính xác và các hằng số liên kết hiệu quả
Tóm tắt
Chúng tôi tính toán các vòng Wilson siêu đối xứng trên hình ellipsoid cho một lớp lớn các lý thuyết trường có siêu đối xứng $$ \mathcal{N} $$ = 2 SCFT bằng cách sử dụng công thức phân bố của Hama và Hosomichi. Từ các vòng này, chúng tôi thu được bức xạ phát ra từ một quark chạy nặng đang tăng tốc cũng như entropy rối, theo các công trình gần đây của Lewkowycz-Maldacena và Fiol-Gerchkovitz-Komargodski. So sánh các kết quả của chúng tôi với các kết quả của lý thuyết $$ \mathcal{N} $$ = 4 SYM, chúng tôi thu được các hàm nội suy f (g2) sao cho một quan sát được trong lý thuyết $$ \mathcal{N} $$ = 2 SCFT có thể được tìm thấy bằng cách thay thế hằng số liên kết tương ứng trong kết quả $$ \mathcal{N} $$ = 4 SYM bằng f (g2). Những "hằng số liên kết hiệu quả chính xác" này mã hóa sự chuẩn hóa tương đối, hữu hạn giữa propagator gluon $$ \mathcal{N} $$ = 2 và $$ \mathcal{N} $$ = 4, và chúng nội suy giữa liên kết yếu và liên kết mạnh. Chúng tôi thảo luận về phạm vi áp dụng của chúng.
Từ khóa
Tài liệu tham khảo
E. Pomoni, Integrability in N = 2 superconformal gauge theories, Nucl. Phys. B 893 (2015) 21 [arXiv:1310.5709] [INSPIRE].
V. Mitev and E. Pomoni, Exact effective couplings of four dimensional gauge theories with \( \mathcal{N} \) =2 supersymmetry, Phys. Rev. D 92 (2015) 125034 [arXiv:1406.3629] [INSPIRE].
N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
J. Teschner, Exact results on \( \mathcal{N} \) = 2 supersymmetric gauge theories, arXiv:1412.7145.
V. Pestun, Localization of the four-dimensional \( \mathcal{N} \) = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].
J. Gomis, T. Okuda and V. Pestun, Exact Results for ’t Hooft Loops in Gauge Theories on S 4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].
A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].
N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].
D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].
N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].
E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].
J. Gomis, P.-S. Hsin, Z. Komargodski, A. Schwimmer, N. Seiberg and S. Theisen, Anomalies, Conformal Manifolds and Spheres, JHEP 03 (2016) 022 [arXiv:1509.08511] [INSPIRE].
N. Hama and K. Hosomichi, Seiberg-Witten Theories on Ellipsoids, JHEP 09 (2012) 033 [arXiv:1206.6359] [INSPIRE].
L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].
H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].
V. Mitev and E. Pomoni, Toda 3-Point Functions From Topological Strings, JHEP 06 (2015) 049 [arXiv:1409.6313] [INSPIRE].
M. Isachenkov, V. Mitev and E. Pomoni, Toda 3-Point Functions From Topological Strings II, arXiv:1412.3395 [INSPIRE].
B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung Function in \( \mathcal{N} \) = 2 Superconformal Field Theories, Phys. Rev. Lett. 116 (2016) 081601 [arXiv:1510.01332] [INSPIRE].
CTEQ collaboration, R. Brock et al., Handbook of perturbative QCD: Version 1.0, Rev. Mod. Phys. 67 (1995) 157 [INSPIRE].
D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in \( \mathcal{N} \) = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].
A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A Semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].
D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].
J.M. Henn and T. Huber, Systematics of the cusp anomalous dimension, JHEP 11 (2012) 058 [arXiv:1207.2161] [INSPIRE].
J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147 [arXiv:1304.6418] [INSPIRE].
N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
L. Freyhult, Review of AdS/CFT Integrability, Chapter III.4: Twist States and the cusp Anomalous Dimension, Lett. Math. Phys. 99 (2012) 255 [arXiv:1012.3993] [INSPIRE].
D. Dorigoni and Y. Hatsuda, Resurgence of the Cusp Anomalous Dimension, JHEP 09 (2015) 138 [arXiv:1506.03763] [INSPIRE].
I. Aniceto, The Resurgence of the Cusp Anomalous Dimension, J. Phys. A 49 (2016) 065403 [arXiv:1506.03388] [INSPIRE].
G.P. Korchemsky, Review of AdS/CFT Integrability, Chapter IV.4: Integrability in QCD and N <4 SYM, Lett. Math. Phys. 99 (2012) 425 [arXiv:1012.4000] [INSPIRE].
N. Beisert, G. Ferretti, R. Heise and K. Zarembo, One-loop QCD spin chain and its spectrum, Nucl. Phys. B 717 (2005) 137 [hep-th/0412029] [INSPIRE].
A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of \( \mathcal{N} \) = 2 Superconformal QCD: Towards the String Dual of \( \mathcal{N} \) = 2 SU(N c ) SYM with N f = 2N c , arXiv:0912.4918 [INSPIRE].
A. Gadde, E. Pomoni and L. Rastelli, Spin Chains in \( \mathcal{N} \) = 2 Superconformal Theories: From the Z 2 Quiver to Superconformal QCD, JHEP 06 (2012) 107 [arXiv:1006.0015] [INSPIRE].
A. Gadde and L. Rastelli, Twisted Magnons, JHEP 04 (2012) 053 [arXiv:1012.2097] [INSPIRE].
E. Pomoni and C. Sieg, From \( \mathcal{N} \) = 4 gauge theory to \( \mathcal{N} \) = 2 conformal QCD: three-loop mixing of scalar composite operators, arXiv:1105.3487 [INSPIRE].
P. Liendo, E. Pomoni and L. Rastelli, The Complete One-Loop Dilation Operator of \( \mathcal{N} \) = 2 SuperConformal QCD, JHEP 07 (2012) 003 [arXiv:1105.3972] [INSPIRE].
A. Gadde, P. Liendo, L. Rastelli and W. Yan, On the Integrability of Planar \( \mathcal{N} \) = 2 Superconformal Gauge Theories, JHEP 08 (2013) 015 [arXiv:1211.0271] [INSPIRE].
M. Bershadsky, Z. Kakushadze and C. Vafa, String expansion as large-N expansion of gauge theories, Nucl. Phys. B 523 (1998) 59 [hep-th/9803076] [INSPIRE].
M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [INSPIRE].
A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].
O. Aharony, M. Berkooz and S.-J. Rey, Rigid holography and six-dimensional \( \mathcal{N} \) = (2, 0) theories on \( Ad{S}_5\times {\mathbb{S}}^1 \), JHEP 03 (2015) 121 [arXiv:1501.02904] [INSPIRE].
F. Passerini and K. Zarembo, Wilson Loops in \( \mathcal{N} \) = 2 super-Yang-Mills from Matrix Model, JHEP 09 (2011) 102 [Erratum ibid. 1110 (2011) 065] [arXiv:1106.5763] [INSPIRE].
J.G. Russo and K. Zarembo, Large-N Limit of \( \mathcal{N} \) = 2 SU(N ) Gauge Theories from Localization, JHEP 10 (2012) 082 [arXiv:1207.3806] [INSPIRE].
J.G. Russo and K. Zarembo, Massive \( \mathcal{N} \) = 2 Gauge Theories at Large-N , JHEP 11 (2013) 130 [arXiv:1309.1004] [INSPIRE].
J.G. Russo and K. Zarembo, Localization at Large-N , in proceedings of 100th anniversary of the birth of I.Ya. Pomeranchuk, Moscow, Russia, 5-6 Jun 2013 [arXiv:1312.1214] [INSPIRE].
D. Marmiroli, Phase structure of \( \mathcal{N} \) = 2∗ SYM on ellipsoids, arXiv:1410.4715 [INSPIRE].
P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].
P.S. Howe, K.S. Stelle and P.C. West, A Class of Finite Four-Dimensional Supersymmetric Field Theories, Phys. Lett. B 124 (1983) 55 [INSPIRE].
J.C. Collins, Renormalization. An Introduction To Renormalization, The Renormalization Group, And The Operator Product Expansion, Cambridge University Press (1986).
A.G. Grozin, Lectures on multiloop calculations, Int. J. Mod. Phys. A 19 (2004) 473 [hep-ph/0307297] [INSPIRE].
A.V. Manohar and M.B. Wise, Heavy quark physics, Cambridge University Press (2007).
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
B. Fraser, Higher rank Wilson loops in the \( \mathcal{N} \) = 2SU(N ) × SU(N ) conformal quiver, J. Phys. A 49 (2016) 02LT03 [arXiv:1503.05634] [INSPIRE].
A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].
A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].
G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].
G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].
S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].
M. Leoni, A. Mauri and A. Santambrogio, Four-point amplitudes in \( \mathcal{N} \) = 2 SCQCD, JHEP 09 (2014) 017 [Erratum ibid. 1502 (2015) 022] [arXiv:1406.7283] [INSPIRE].
M. Leoni, A. Mauri and A. Santambrogio, On the amplitude/Wilson loop duality in \( \mathcal{N} \) = 2 SCQCD, Phys. Lett. B 747 (2015) 325 [arXiv:1502.07614] [INSPIRE].
N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP 11 (2012) 075 [arXiv:1207.5489] [INSPIRE].
N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Analytic Solution of Bremsstrahlung TBA II: Turning on the Sphere Angle, JHEP 10 (2013) 036 [arXiv:1305.1944] [INSPIRE].
G. Sizov and S. Valatka, Algebraic Curve for a Cusped Wilson Line, JHEP 05 (2014) 149 [arXiv:1306.2527] [INSPIRE].
R.A. Janik, Review of AdS/CFT Integrability, Chapter III.5: Lúscher Corrections, Lett. Math. Phys. 99 (2012) 277 [arXiv:1012.3994] [INSPIRE].
K. Papadodimas, Topological Anti-Topological Fusion in Four-Dimensional Superconformal Field Theories, JHEP 08 (2010) 118 [arXiv:0910.4963] [INSPIRE].
M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2)\( \mathcal{N} \) = 2 superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].
M. Baggio, V. Niarchos and K. Papadodimas, tt ∗ equations, localization and exact chiral rings in 4d \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].
M. Baggio, V. Niarchos and K. Papadodimas, On exact correlation functions in SU(N ) \( \mathcal{N} \) =2 superconformal QCD, JHEP 11 (2015) 198 [arXiv:1508.03077] [INSPIRE].
N. Gromov and G. Sizov, Exact Slope and Interpolating Functions in \( \mathcal{N} \) = 6 Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 121601 [arXiv:1403.1894] [INSPIRE].
L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].
B. Fiol, B. Garolera and G. Torrents, Probing \( \mathcal{N} \) = 2 superconformal field theories with localization, JHEP 01 (2016) 168 [arXiv:1511.00616] [INSPIRE].
