Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone

Nature Medicine - Tập 14 Số 2 - Trang 181-187 - 2008
Robert Sackstein1, Jasmeen S. Merzaban1, Derek W. Cain1, Nilesh M. Dagia1, Joel A. Spencer2, Charles P. Lin2, Roland Wohlgemuth3
1Departments of Dermatology and Medicine, Brigham and Women's Hospital and Harvard Skin Disease Research Center, Harvard Medical School, Boston, 02115, Massachusetts, USA
2Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, 02115, Massachusetts, USA
3Research Specialties, Sigma-Aldrich, Buchs, CH-9470, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Horwitz, E.M. et al. Isolated allogeneic bone marrow–derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. USA 99, 8932–8937 (2002).

Jin-Xiang, F., Xiaofeng, S., Jun-Chuan, Q., Yan, G. & Xue-Guang, Z. Homing efficiency and hematopoietic reconstitution of bone marrow–derived stroma cells expanded by recombinant human macrophage-colony stimulating factor in vitro. Exp. Hematol. 32, 1204–1211 (2004).

Gao, J., Dennis, J.E., Muzic, R.F., Lundberg, M. & Caplan, A.I. The dynamic in vivo distribution of bone marrow–derived mesenchymal stem cells after infusion. Cells Tissues Organs 169, 12–20 (2001).

Sipkins, D.A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

Schweitzer, K.M. et al. Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am. J. Pathol. 148, 165–175 (1996).

Dimitroff, C.J., Lee, J.Y., Rafii, S., Fuhlbrigge, R.C. & Sackstein, R. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J. Cell Biol. 153, 1277–1286 (2001).

Mauney, J.R., Volloch, V. & Kaplan, D.L. Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng. 11, 787–802 (2005).

Mangi, A.A. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9, 1195–1201 (2003).

Pittenger, M.F. & Martin, B.J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95, 9–20 (2004).

Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

Sackstein, R. The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr. Opin. Hematol. 12, 444–450 (2005).

Polley, M.J. et al. CD62 and endothelial cell–leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc. Natl. Acad. Sci. USA 88, 6224–6228 (1991).

Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

Dimitroff, C.J., Lee, J.Y., Fuhlbrigge, R.C. & Sackstein, R. A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proc. Natl. Acad. Sci. USA 97, 13841–13846 (2000).

Sackstein, R. & Dimitroff, C.J. A hematopoietic cell L-selectin ligand that is distinct from PSGL-1 and displays N-glycan–dependent binding activity. Blood 96, 2765–2774 (2000).

Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

Kobzdej, M.M., Leppanen, A., Ramachandran, V., Cummings, R.D. & McEver, R.P. Discordant expression of selectin ligands and sialyl Lewis x–related epitopes on murine myeloid cells. Blood 100, 4485–4494 (2002).

Xia, L., McDaniel, J.M., Yago, T., Doeden, A. & McEver, R.P. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104, 3091–3096 (2004).

Hidalgo, A. & Frenette, P.S. Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow. Blood 105, 567–575 (2005).

Murray, B.W., Takayama, S., Schultz, J. & Wong, C.H. Mechanism and specificity of human α-1,3-fucosyltransferase V. Biochemistry 35, 11183–11195 (1996).

Schrantz, N. et al. Manganese induces apoptosis of human B cells: caspase-dependent cell death blocked by bcl-2. Cell Death Differ. 6, 445–453 (1999).

de Bruyn, K.M., Rangarajan, S., Reedquist, K.A., Figdor, C.G. & Bos, J.L. The small GTPase Rap1 is required for Mn2+- and antibody-induced LFA-1– and VLA-4–mediated cell adhesion. J. Biol. Chem. 277, 29468–29476 (2002).

Alon, R. et al. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J. Cell Biol. 128, 1243–1253 (1995).

Chigaev, A. et al. Real time analysis of the affinity regulation of α4-integrin. The physiologically activated receptor is intermediate in affinity between resting and Mn2+ or antibody activation. J. Biol. Chem. 276, 48670–48678 (2001).

Takamatsu, Y., Simmons, P.J. & Levesque, J.P. Dual control by divalent cations and mitogenic cytokines of α4β1 and α5β1 integrin avidity expressed by human hemopoietic cells. Cell Adhes. Commun. 5, 349–366 (1998).

Mazo, I.B., Quackenbush, E.J., Lowe, J.B. & von Andrian, U.H. Total body irradiation causes profound changes in endothelial traffic molecules for hematopoietic progenitor cell recruitment to bone marrow. Blood 99, 4182–4191 (2002).

Mohler, W., Millard, A.C. & Campagnola, P.J. Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003).

Hauschka, P.V., Lian, J.B. & Gallop, P.M. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc. Natl. Acad. Sci. USA 72, 3925–3929 (1975).

Yao, L. et al. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood 94, 3820–3828 (1999).

Mocco, J. et al. HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke. Circ. Res. 91, 907–914 (2002).