Evolutionary population dynamics and grey wolf optimizer

Neural Computing and Applications - Tập 26 Số 5 - Trang 1257-1263 - 2015
Shahrzad Saremi1, Seyedeh Zahra Mirjalili2, Seyed Mohammad Mirjalili2
1School of Information and Communication Technology, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia
2Zharfa Pajohesh System (ZPS) Co., Unit 5, No. 30, West 208 St., Third Sq. Tehranpars, P.O. Box 1653745696, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the 2003 international conference on information and knowledge engineering (IKE’03), Las Vegas, NV, USA, 2003, pp 255–261

Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491

Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: Advances in natural computation. Springer, pp 264–273

Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140

Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:1208.2214

Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12:702–713

Abbass HA (2001) MBO: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation, 2001, pp 207–214

Li X (2003) A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China

Roth M (2005) Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks. Ph. D thesis, Cornel University

Pinto PC, Runkler TA, Sousa JM (2007) Wasp swarm algorithm for dynamic MAX-SAT problems. In: Adaptive and natural computing algorithms. Springer, pp 350–357

Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings, p 162

Lu X, Zhou Y (2008) A novel global convergence algorithm: bee collecting pollen algorithm. In: Advanced intelligent computing theories and applications. With aspects of artificial intelligence. Springer, pp 518–525

Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009, pp 210–214

Shiqin Y, Jianjun J, Guangxing Y (2009) A dolphin partner optimization. In: WRI global congress on intelligent systems, 2009. GCIS’09, pp 124–128

Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bioinspired Comput 2:78–84

Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energy Res 37(10):1196–1204

Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

Abdel-Kader RF (2011) Hybrid discrete PSO with GA operators for efficient QoS-multicast routing. Ain Shams Eng J 2:21–31

Kao Y-T, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8:849–857

Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization. In: 2010 international conference on computer and information application (ICCIA), 2010, pp 374–377

Khamsawang S, Wannakarn P, Jiriwibhakorn S (2010) Hybrid PSO-DE for solving the economic dispatch problem with generator constraints. In: 2010 the 2nd international conference on computer and automation engineering (ICCAE), 2010, pp 135–139

Shuang B, Chen J, Li Z (2011) Study on hybrid PS-ACO algorithm. Appl Intell 34:64–73

El-Abd M (2011) A hybrid ABC-SPSO algorithm for continuous function optimization. In: 2011 IEEE symposium on swarm intelligence (SIS), 2011, pp 1–6

Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3173

Coelho LdS (2008) A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals 37:1409–1418

Lee Z-J, Su S-F, Chuang C-C, Liu K-H (2008) Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl Soft Comput 8:55–78

Duan H, Yu Y, Zhang X, Shao S (2010) Three-dimension path planning for UCAV using hybrid meta-heuristic ACO–DE algorithm. Simul Model Pract Theory 18:1104–1115

Lewis A, Mostaghim S, Randall (2008) Evolutionary population dynamics and multi-objective optimisation problems. In: Multi-objective optimization in computational intelligence: theory and practice, pp 185–206

Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381

Bak P (1997) How nature works. Oxford University Press, Oxford

Boettcher S, Percus AG (1999) Extremal optimization: methods derived from co-evolution. arXiv preprint arXiv:math/9904056

Lewis A, Abramson D, Peachey T (2004) An evolutionary programming algorithm for automatic engineering design. In: Parallel processing and applied mathematics. Springer, pp 586–594

Randall M, Lewis A (2006) An extended extremal optimisation model for parallel architectures. In: Second IEEE international conference on e-science and grid computing, 2006. e-Science’06, pp 114–114

Fogel LJ (1962) Autonomous automata. Ind Res 4:14–19

Xie D, Luo Z, Yu F (2009) The computing of the optimal power consumption for semi-track air-cushion vehicle using hybrid generalized extremal optimization. Appl Math Model 33:2831–2844

Randall M (2007) Enhancements to extremal optimisation for generalised assignment. In: Progress in artificial life. Springer, pp 369–380

Randall M, Hendtlass T, Lewis A (2009) Extremal optimisation for assignment type problems. In: Biologically-inspired optimisation methods. Springer, pp 139–164

Gómez-Meneses P, Randall M, Lewis A (2010) A hybrid multi-objective extremal optimisation approach for multi-objective combinatorial optimisation problems. In: 2010 IEEE congress on evolutionary computation (CEC), 2010, pp 1–8

Tamura K, Kitakami H, Nakada A (2013) Distributed modified extremal optimization using island model for reducing crossovers in reconciliation graph. Eng Lett 21:81–88

Gomez Meneses PS (2012) Extremal optimisation applied to constrained combinatorial multi-objective optimisation problems. Ph. D thesis, Bond University

Tamura K, Kitakami H, Nakada A (2014) Island-model-based distributed modified extremal optimization for reducing crossovers in reconciliation graph. In: Transactions on engineering technologies. Springer, pp 141–156

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584

Mirjalili S, Lewis A, Sadiq AS (2014) Autonomous particles groups for particle swarm optimization. Arab J Sci Eng 39(6):4683–4697

Mirjalili S, Mirjalili S, Yang X-S (2014) Binary bat algorithm. Neural Comput Appl 25:663–681

Mirjalili S, Wang G-G, Coelho LdS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102

Digalakis J, Margaritis K (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506

Molga M, Smutnicki C (2005) Test functions for optimization needs. In: Test functions for optimization needs

Yang X-S (2010) Test problems in optimization. arXiv preprint arXiv:1008.0549

Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evolut Comput 9:1–14

Saremi S, Mirjalili S, Lewis A (2014) How important is a transfer function in discrete heuristic algorithms. Neural Comput Appl 1–16. doi: 10.1007/s00521-014-1743-5

Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097

Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic krill herd optimization algorithm. Proc Technol 12:180–185