Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism

Communications Biology - Tập 1 Số 1
Jason D. Hoeksema1, James D. Bever2, Sounak Chakraborty3, V. Bala Chaudhary4, Monique Gardes5, Catherine A. Gehring6, Miranda M. Hart7, Elizabeth A. Housworth8, Wittaya Kaonongbua9, John N. Klironomos7, Marc J. Lajeunesse10, James Meadow11, Brook G. Milligan12, Bridget J. Piculell13, Anne Pringle14, Megan A. Rúa15, James Umbanhowar16, Wolfgang Viechtbauer17, Yen‐Wen Wang14, Gail W. T. Wilson18, Peter C. Zee1
1Department of Biology, University of Mississippi, University, MS 38677 USA
2Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS, 66045, USA
3Department of Statistics, University of Missouri, Columbia, MO, 65201, USA
4Department of Environmental Science and Studies, DePaul University, Chicago, IL 60614, USA
5Laboratoire Évolution et Diversité Biologique, UMR5174 UPS – CNRS – IRD - ENSFEA, Université Toulouse III Paul Sabatier, Toulouse, France
6Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
7Department of Biology, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
8Departments of Biology and Mathematics, Indiana University, Bloomington, IN, 47405, USA
9Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
10Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
11Department of Land Resources and Environmental Sciences, Montana State University, 344 Leon Johnson Hall, Bozeman, MT, 59717, USA
12Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
13Department of Biology, College of Charleston, Charleston, SC, 29424, USA
14Departments of Botany and Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
15Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
16Department of Biology, University of North Carolina, Chapel Hill, NC 27599 USA
17Department of Psychiatry and Neuropsychology, Maastricht University, 6200, MD, Maastricht, Netherlands
18Natural Resource Ecology & Management, Oklahoma State University, Stillwater, OK, 74078, USA

Tóm tắt

AbstractMost plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

Từ khóa


Tài liệu tham khảo

Johnson, M. T. J. & Stinchcombe, J. R. An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol. 22, 250–257 (2007).

Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

Brzostek, E. R., Rebel, K. T., Smith, K. R. & Phillips, R. P. in Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage (ed. N. C. Johnson, C. Gehring, & J. Jansa), 479–499 (Elsevier, Amsterdam, 2017).

Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304 (2002).

Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).

Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizas along the mutualism-parasitism continuum. New Phytol. 135, 1–12 (1997).

Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).

Peay, K. G., Kennedy, P. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

Terrer, C. S., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

Hoeksema, J. D. & Bruna, E. M. in Mutualisms (ed. J. L. Bronstein) (Oxford University Press, Oxford, 2015).

Jones, M. D. & Smith, S. E. Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can. J. Bot. 82, 1089–1109 (2004).

Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).

Wilson, G. W. T. & Hartnett, D. C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am. J. Bot. 85, 1732–1738 (1998).

Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).

Hibbett, D. S. & Matheny, P. B. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol. 7, 13 (2009).

Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).

Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).

Reinhart, K. O., Wilson, G. W. T. & Rinella, M. J. Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol. Lett. 15, 689–695 (2012).

Yang, H. et al. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J. Ecol. 105, 219–228 (2017).

Rúa, M. A. et al. Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolut. Biol. 16, 122 (2016).

Chaudhary, V. B. et al. The context of mutualism: a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).

Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

Sterne, J. A. C. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343, d4002 (2011).

Bittleston, L. S., Pierce, N. E., Ellison, A. M. & Pringle, A. Convergence in multispecies interactions. Trends Ecol. Evol. 31, 269–280 (2016).

Werner, G. D. A., Cornwell, W. K., Sprent, J. I., Kattge, J. & Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5, 4087 (2014).

Bever, J. D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol. 157, 465–473 (2003).

Thompson, J. N. The Coevolutionary Process. (University of Chicago Press, Chicago, 1994).

Anacker, B. L., Klironomos, J. N., Maherali, H., Reinhart, K. O. & Strauss, S. Y. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol. Lett. 17, 1613–1621 (2014).

Powell, J. R. et al. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. R. Soc. Lond. B Biol. Sci. 276, 4237–4245 (2009).

Koch, A., Antunes, P. M., Maherali, H., Hart, M. M. & Klironomos, J. Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol. 214, 1330–1337 (2017).

Kjoller, R. et al. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol. 194, 278–286 (2012).

Torres Aquino, M. & Plassard, C. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. FEMS Microbiol. Ecol. 48, 149–156 (2004).

Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

Housworth, E. A., Martins, E. P. & Lynch, M. The phylogenetic mixed model. Am. Nat. 163, 84–96 (2004).

Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).

Lajeunesse, M. J. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).

Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).

Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer Science+Business Media, LLC, New York, 2002).

Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).

Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat.-Theory Methods 7, 13–26 (1978).

Kreutz, C., Raue, A., Kaschek, D. & Timmer, J. Profile likelihood in systems biology. FEBS J. 280, 2564–2571 (2013).

Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

Chaudhary, V.B. et al. Data from: MycoDB, a global database of plant response to mycorrhizal fungi. Dryad Digital Repository. https://doi.org/10.5061/dryad.723m1.4 (2016).

Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).