Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulexspecies complex

Springer Science and Business Media LLC - Tập 11 - Trang 1-12 - 2011
Teresa J Crease1, Robin Floyd1,2, Melania E Cristescu3, David Innes4
1Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
2School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
3Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
4Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada

Tóm tắt

Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh). Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S) for Glutamic acid (F) at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.

Tài liệu tham khảo

Charlesworth B: Molecular population genomics: a short history. Genet Res Camb. 2010, 92: 397-411. 10.1017/S0016672310000522. Avise J: Molecular Markers, Natural History, and Evolution. 2004, Sunderland, Sinauer, Second Eanes WF: Analysis of selection on enzyme polymorphisms. Annu Rev Ecol Syst. 1999, 30: 301-326. 10.1146/annurev.ecolsys.30.1.301. Storz JF, Wheat CW: Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution. 2010, 64: 2489-2509. 10.1111/j.1558-5646.2010.01044.x. Dalziel AC, Rogers SM, Schulte PM: Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol Ecol. 2009, 18: 4997-5017. 10.1111/j.1365-294X.2009.04427.x. Powers DA, Schulte PM: Evolutionary adaptations of gene structure and expression in natural populations in relation to a changing environment: A multidisciplinary approach to address the million-year saga of a small fish. J Exp Zool. 1998, 282: 71-94. 10.1002/(SICI)1097-010X(199809/10)282:1/2<71::AID-JEZ11>3.0.CO;2-J. Schulte PM: Environmental adaptations as windows on molecular evolution. Comp Biochem Physiol B: Biochem Mol Biol. 2001, 128: 597-611. 10.1016/S1096-4959(00)00357-2. Bernardi G, Sordino P, Powers DA: Concordant mitochondrial and nuclear-DNA phylogenies for populations of the teleost fish Fundulus heteroclitus. Proc Natl Acad Sci USA. 1993, 90: 9271-9274. 10.1073/pnas.90.20.9271. Rees BB, Bowman JAL, Schulte PM: Structure and sequence conservation of a putative hypoxia response element in the lactate dehydrogenase-B gene of Fundulus. Biol Bull. 2001, 200: 247-251. 10.2307/1543505. Rees BB, Figueroa YG, Wiese TE, Beckman BS, Schulte PM: A novel hypoxia-response element in the lactate dehydrogenase-B gene of the killifish Fundulus heteroclitus. Comp Biochem Physiol A: Mol Integr Physiol. 2009, 154: 70-77. 10.1016/j.cbpa.2009.05.001. Černý M, Hebert PDN: Genetic diversity and breeding system variation in Daphnia pulicaria from North American lakes. Heredity. 1993, 71: 497-507. 10.1038/hdy.1993.168. Hebert PDN: Clonal diversity in cladoceran populations. Population Biology: Retrospect and Prospect. Edited by: King C, Dawson P. 1983, New York, Columbia University Press, 37-60. Hebert PDN, Beaton MJ, Schwartz SS, Stanton DJ: Polyphyletic origins of asexuality in Daphnia pulex. 1. Breeding-system variation and levels of clonal diversity. Evolution. 1989, 43: 1004-1015. 10.2307/2409581. Dudycha JL, Tessier AJ: Natural genetic variation of life span, reproduction, and juvenile growth in Daphnia. Evolution. 1999, 53: 1744-1756. 10.2307/2640437. Dudycha JL: Mortality dynamics of Daphnia in contrasting habitats and their role in ecological divergence. Freshwater Biology. 2004, 49: 505-514. 10.1111/j.1365-2427.2004.01201.x. Cristescu ME, Colbourne JK, Radivojc J, Lynch M: A micro satellite-based genetic linkage map of the waterflea, Daphnia pulex: On the prospect of crustacean genomics. Genomics. 2006, 88: 415-430. 10.1016/j.ygeno.2006.03.007. Cristescu ME, Innes DJ, Stillman JH, Crease TJ: D- and L-lactate dehydrogenases during invertebrate evolution. BMC Evol Biol. 2008, 8: 268-10.1186/1471-2148-8-268. Cristescu ME, Egbosimba EE: Evolutionary history of d-lactate dehydrogenases: A phylogenomic perspective on functional diversity in the FAD binding oxidoreductase/transferase type 4 family. J Mol Evol. 2009, 69: 276-287. 10.1007/s00239-009-9274-x. Hebert PDN, Schwartz SS, Ward RD, Finston TL: Macrogeographic patterns of breeding system diversity in the Daphnia pulex group. 1. Breeding systems of Canadian populations. Heredity. 1993, 70: 148-161. 10.1038/hdy.1993.24. Crease TJ, Lee SK, Yu SL, Spitze K, Lehman N, Lynch M: Allozyme and mtDNA variation in populations of the Daphnia pulex complex from both sides of the Rocky Mountains. Heredity. 1997, 79: 242-251. 10.1038/hdy.1997.151. Pfrender ME, Spitze K, Lehman N: Multi-locus genetic evidence for rapid ecologically based specation in Daphnia. Mol Ecol. 2000, 9: 1717-1735. 10.1046/j.1365-294x.2000.01062.x. Omilian AR, Lynch M: Patterns of intraspecific DNA variation in the Daphnia nuclear genome. Genetics. 2009, 182: 325-336. 10.1534/genetics.108.099549. Hebert PDN, Crease TJ: Clonal diversity in populations of Daphnia pulex reproducing by obligate parthenogenesis. Heredity. 1983, 51: 353-369. 10.1038/hdy.1983.40. Weider LJ: Life-history variation among low arctic clones of obligately parthenogenetic Daphnia pulex - a diploid-polyploid complex. Oecologia. 1987, 73: 251-256. 10.1007/BF00377515. Colbourne JK, Crease TJ, Weider LJ, Hebert PDN, Dufresne F, Hobæk A: Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol J Linn Soc. 1998, 65: 347-365. Mergeay J, Aguilera X, Declerck S, Petrusek A, Huyse T, De Meester L: The genetic legacy of polyploid Bolivian Daphnia: the tropical Andes as a source for the North and South American D. pulicaria complex. Mol Ecol. 2008, 17: 1789-1800. 10.1111/j.1365-294X.2007.03679.x. McTaggart S, Dudycha JL, Omilian A, Crease TJ: Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics. 2007, 175: 311-320. Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987, 19: 11-15. Innes DJ, Schwartz SS, Hebert PDN: Genotypic diversity and variation in mode of reproduction among populations in the Daphnia pulex group. Heredity. 1986, 57: 345-355. 10.1038/hdy.1986.134. Vergilino R, Markova S, Ventura M, Manca M, Dufresne F: Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Mol Ecol. 2011, 20: 1191-1207. 10.1111/j.1365-294X.2011.05004.x. BioEdit. [http://www.mbio.ncsu.edu/BioEdit/bioedit.html] Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187. Hudson RR, Kreitman M, Aguade M: A test of neutral molecular evolution based on nucleotide data. Genetics. 1987, 116: 153-159. Betrán EJ, Rozas J, Navarro A, Barbadilla A: The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics. 1997, 146: 89-99. Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinf Online. 2005, 1: 47-50. R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing Mr. Bayes v3.1.2. [http://mrbayes.csit.fsu.edu] Colbourne JK, Hebert PDN: The systematics of North American Daphnia (Crustacea: Anomopoda): A molecular phylogenetic approach. Philos Trans R Soc London, Ser B. 1996, 351: 349-360. 10.1098/rstb.1996.0028. Saitou N, Nei M: The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092. Dufresne F, Hebert PDN: Pleistocene glaciations and polyphyletic origins of polyploidy in an arctic cladoceran. Proc R Soc London, Ser B. 1997, 264: 201-206. 10.1098/rspb.1997.0028. Wang-Sattler R, Blandin S, Ning Y, Blass C, Dolo G, et al: Mosaic genome architecture of the Anopheles gambiae species complex. PLoS ONE. 2007, 2: e1249-10.1371/journal.pone.0001249. Heier CR, Dudycha JL: Ecological speciation in a cyclic parthenogen: Sexual capability of experimental hybrids between Daphnia pulex and Daphnia pulicaria. Limnol Oceanogr. 2009, 54: 492-502. 10.4319/lo.2009.54.2.0492. Lynch M: The origins of eukaryotic gene structure. Mol Biol Evol. 2006, 23: 450-468. Simonsen KL, Churchill GA, Aquadro CF: Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995, 141: 413-429. Anisimova M, Bielawski JP, Yang Z: Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol. 2002, 19: 950-958. Kryazhimskiy S, Plotkin JB: The population genetics of dN/dS. PLoS Genetics. 2008, 4: e1000304-10.1371/journal.pgen.1000304. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP: A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 2006, 313: 101-104. 10.1126/science.1126121. Wheat CW, Haag C, Marden JH, Hanski I, Frilander M: Nucleotide polymorphism at a gene (Pgi) under balancing selection in a butterfly metapopulation. Mol Biol Evol. 2010, 27: 267-281. 10.1093/molbev/msp227. Scott GR, Schulte PM, Egginton S, Scott ALM, Richards JG, Milsom WK: Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol. 2011, 28: 351-363. 10.1093/molbev/msq205. Tessier AJ, Welser J: Cladoceran assemblages, seasonal succession and the importance of a hypolimnetic refuge. Freshwater Biology. 1991, 25: 85-93. 10.1111/j.1365-2427.1991.tb00475.x. Zeng K, Fu YX, Shi S, Wu CI: Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics. 2006, 174: 1431-1439. 10.1534/genetics.106.061432.