Evolutionary Radiation Pattern of Novel Protein Phosphatases Revealed by Analysis of Protein Data from the Completely Sequenced Genomes of Humans, Green Algae, and Higher Plants

Oxford University Press (OUP) - Tập 146 Số 2 - Trang 323-324 - 2008
David Kerk1, George W. Templeton1, Greg B. G. Moorhead1
1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Tóm tắt

AbstractIn addition to the major serine/threonine-specific phosphoprotein phosphatase, Mg2+-dependent phosphoprotein phosphatase, and protein tyrosine phosphatase families, there are novel protein phosphatases, including enzymes with aspartic acid-based catalysis and subfamilies of protein tyrosine phosphatases, whose evolutionary history and representation in plants is poorly characterized. We have searched the protein data sets encoded by the well-finished nuclear genomes of the higher plants Arabidopsis (Arabidopsis thaliana) and Oryza sativa, and the latest draft data sets from the tree Populus trichocarpa and the green algae Chlamydomonas reinhardtii and Ostreococcus tauri, for homologs to several classes of novel protein phosphatases. The Arabidopsis proteins, in combination with previously published data, provide a complete inventory of known types of protein phosphatases in this organism. Phylogenetic analysis of these proteins reveals a pattern of evolution where a diverse set of protein phosphatases was present early in the history of eukaryotes, and the division of plant and animal evolution resulted in two distinct sets of protein phosphatases. The green algae occupy an intermediate position, and show similarity to both plants and animals, depending on the protein. Of specific interest are the lack of cell division cycle (CDC) phosphatases CDC25 and CDC14, and the seeming adaptation of CDC14 as a protein interaction domain in higher plants. In addition, there is a dramatic increase in proteins containing RNA polymerase C-terminal domain phosphatase-like catalytic domains in the higher plants. Expression analysis of Arabidopsis phosphatase genes differentially amplified in plants (specifically the C-terminal domain phosphatase-like phosphatases) shows patterns of tissue-specific expression with a statistically significant number of correlated genes encoding putative signal transduction proteins.

Từ khóa


Tài liệu tham khảo

2004, Cell, 117, 699, 10.1016/j.cell.2004.05.018

1997, Nucleic Acids Res, 25, 3389, 10.1093/nar/25.17.3389

1997, Proc Natl Acad Sci USA, 94, 14300, 10.1073/pnas.94.26.14300

1998, Bioinformatics, 14, 48, 10.1093/bioinformatics/14.1.48

2006, Nucleic Acids Res, 34, W369, 10.1093/nar/gkl198

1995, Mach Learn, 21, 51

2006, Plant Physiol, 142, 586, 10.1104/pp.106.084939

2004, Nucleic Acids Res, 32, D138, 10.1093/nar/gkh121

2006, Plant J, 45, 917, 10.1111/j.1365-313X.2005.02651.x

1992, J Exp Med, 176, 1625, 10.1084/jem.176.6.1625

2006, Trends Plant Sci, 11, 474, 10.1016/j.tplants.2006.08.009

2004, Proc Natl Acad Sci USA, 101, 11707, 10.1073/pnas.0306880101

2005, Plant Mol Biol, 59, 553, 10.1007/s11103-005-6802-y

2004, Funct Integr Genomics, 4, 163

2002, Nat Cell Biol, 4, E127, 10.1038/ncb0502-e127

2004, Nucleic Acids Res, 32, D575, 10.1093/nar/gkh133

2006, Curr Opin Plant Biol, 9, 470, 10.1016/j.pbi.2006.07.015

2006, Proc Natl Acad Sci USA, 103, 11647, 10.1073/pnas.0604795103

2006, Proc Natl Acad Sci USA, 103, 5413, 10.1073/pnas.0509770102

1998, Bioinformatics, 14, 755, 10.1093/bioinformatics/14.9.755

2004, Nucleic Acids Res, 32, 1792, 10.1093/nar/gkh340

1998, Proc Natl Acad Sci USA, 95, 14863, 10.1073/pnas.95.25.14863

2006, Plant Physiol, 141, 1544, 10.1104/pp.106.084079

1996, Methods Enzymol, 266, 418, 10.1016/S0076-6879(96)66026-1

2005, Nat Cell Biol, 7, 21, 10.1038/ncb1201

2003, EMBO J, 22, 3524, 10.1093/emboj/cdg348

2004, J Biol Chem, 279, 24813, 10.1074/jbc.M402049200

2000, Science, 290, 2110, 10.1126/science.290.5499.2110

2004, J Biol Chem, 279, 10892, 10.1074/jbc.M312513200

2003, J Biol Chem, 278, 13627, 10.1074/jbc.M213191200

1999, Nucleic Acids Res, 27, 297, 10.1093/nar/27.1.297

2006, Curr Opin Cell Biol, 18, 26, 10.1016/j.ceb.2005.11.005

2006, Plant J, 46, 336, 10.1111/j.1365-313X.2006.02681.x

2007, Methods Mol Biol, 365, 347

2002, Plant Physiol, 129, 908, 10.1104/pp.004002

2006, Plant J, 46, 400, 10.1111/j.1365-313X.2006.02704.x

2004, Cell Cycle, 3, 513

2002, Plant Cell, 14, 3043, 10.1105/tpc.005306

2007, Proc Natl Acad Sci USA, 104, 6596, 10.1073/pnas.0702099104

1999, cerevisiae. Mol Cell, 4, 55, 10.1016/S1097-2765(00)80187-2

1997, Gene, 198, 223, 10.1016/S0378-1119(97)00318-1

2002, Proc Natl Acad Sci USA, 99, 10893, 10.1073/pnas.112276199

2004, Proc Natl Acad Sci USA, 101, 14539, 10.1073/pnas.0403174101

2004, Proc Natl Acad Sci USA, 101, 13380, 10.1073/pnas.0405248101

2006, Nucleic Acids Res, 34, D257, 10.1093/nar/gkj079

2004, Plant Physiol, 134, 777, 10.1104/pp.103.033910

2006, Nucleic Acids Res, 34, W504, 10.1093/nar/gkl204

2002, Trends Biochem Sci, 27, 514, 10.1016/S0968-0004(02)02179-5

2002, Science, 298, 1912, 10.1126/science.1075762

2007, Nucleic Acids Res, 35, D237, 10.1093/nar/gkl951

2005, Genes Dev, 19, 1401, 10.1101/gad.1318105

2004, Nat Biotechnol, 22, 1006, 10.1038/nbt992

1993, J Biol Chem, 268, 23634, 10.1016/S0021-9258(19)49509-4

2005, BMC Genomics, 6, 25, 10.1186/1471-2164-6-25

2007, Nat Rev Mol Cell Biol, 8, 234, 10.1038/nrm2126

2007, Annu Rev Biochem, 76, 723, 10.1146/annurev.biochem.76.052705.163409

1997, EMBNEW.News, 4, 1

2005, Bioinformatics, 21, 4411, 10.1093/bioinformatics/bti714

1997, Cell, 91, 881, 10.1016/S0092-8674(00)80480-8

2004, Nucleic Acids Res, 32, W37, 10.1093/nar/gkh382

2007, Mol Cell Biochem, 303, 183, 10.1007/s11010-007-9472-z

2003, Nature, 426, 295, 10.1038/nature02093

2005, Trends Genet, 21, 163, 10.1016/j.tig.2005.01.005

2006, Trends Cell Biol, 16, 403, 10.1016/j.tcb.2006.06.001

2000, Protein Sci, 9, 232, 10.1110/ps.9.2.232

2002, Biochem Biophys Res Commun, 295, 85, 10.1016/S0006-291X(02)00641-1

2006, Dev Cell, 11, 763, 10.1016/j.devcel.2006.10.001

2002, Bioinformatics, 18, 502, 10.1093/bioinformatics/18.3.502

2004, Trends Plant Sci, 9, 236, 10.1016/j.tplants.2004.03.007

1993, Cell, 75, 487, 10.1016/0092-8674(93)90383-2

2003, BMC Bioinformatics, 4, 41, 10.1186/1471-2105-4-41

1997, Nucleic Acids Res, 25, 4876, 10.1093/nar/25.24.4876

2003, Plant J, 33, 957, 10.1046/j.1365-313X.2003.01682.x

2006, Curr Opin Cell Biol, 18, 623, 10.1016/j.ceb.2006.09.001

2004, Plant Physiol, 135, 1243, 10.1104/pp.104.040428

2003, Trends Biochem Sci, 28, 280, 10.1016/S0968-0004(03)00092-6

2005, BMC Cell Biol, 6, 29, 10.1186/1471-2121-6-29

1997, Cell, 91, 961, 10.1016/S0092-8674(00)80487-0

2001, Plant Cell, 13, 1527, 10.1105/TPC.010115

2005, Biochem Biophys Res Commun, 331, 1401, 10.1016/j.bbrc.2005.04.065

2005, Trends Plant Sci, 10, 407, 10.1016/j.tplants.2005.07.003