Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Varki A: Essentials of glycobiology. 2009, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2
Lichtenthaler FW: Carbohydrates as renewable raw materials: a major challenge of green chemistry. Methods and reagents for green chemistry: an introduction. Edited by: Tundo P, Perosa A, Zecchini F. 2007, Hoboken, NJ: J. Wiley, 23-63.
Laine RA: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05x10(12) structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994, 4: 759-767. 10.1093/glycob/4.6.759.
Sharon N: The conquest of the last frontier of molecular and cell biology. Foreword Biochimie. 2001, 83: 555-555. 10.1016/S0300-9084(01)01310-4.
Anonymous: 10 Emerging Technologies That Will Change the World. Technology Review. 2003, 33-51.
Davies GJ, Gloster TM, Henrissat B: Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr Opin Struct Biol. 2005, 15: 637-645. 10.1016/j.sbi.2005.10.008.
Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). http://www.chem.qmul.ac.uk/iubmb/enzyme/,
Henrissat B: A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem J. 1991, 280: 309-316.
Davies GJ, Sinnott ML: Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochem J. 2008, 1-5. 10.1042/BJ20080382. (online only)
Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP: Cellulase families revealed by hydrophobic cluster-analysis. Gene. 1989, 81: 83-95. 10.1016/0378-1119(89)90339-9.
The Carbohydrate-Active enZYme (CAZy) database. http://www.cazy.org,
Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX: Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol. 2009, 107: 245-256. 10.1111/j.1365-2672.2009.04202.x.
Elifantz H, Waidner LA, Michelou VK, Cottrell MT, Kirchman DL: Diversity and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean. FEMS Microbiol Ecol. 2008, 63: 316-327. 10.1111/j.1574-6941.2007.00429.x.
Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo SJ, Clark DS, Chen F, Zhang T, et al: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011, 331: 463-467. 10.1126/science.1200387.
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37: D233-D238. 10.1093/nar/gkn663.
Béguin P: Molecular biology of cellulose degradation. Annu Rev Microbiol. 1990, 44: 219-248. 10.1146/annurev.mi.44.100190.001251.
Lo Leggio L, Parry NJ, VanBeeumen J, Claeyssens M, Bhat MK, Pickersgill RW: Crystallization and preliminary X-ray analysis of the major endoglucanase from Thermoascus aurantiacus. Acta Crystallogr D Biol Crystallogr. 1997, 53: 599-604. 10.1107/S0907444997005404.
Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmermann W, Winterhalter K, Piontek K: High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. Structure Fold Des. 1998, 6: 1433-1444. 10.1016/S0969-2126(98)00142-7.
Lo Leggio L, Larsen S: The 1.62 angstrom structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett. 2002, 523: 103-108. 10.1016/S0014-5793(02)02954-X.
Larsson AM, Anderson L, Xu BZ, Munoz IG, Uson I, Janson JC, Stalbrand H, Stahlberg J: Three-dimensional crystal structure and enzymic characterization of beta-mannanase Man5A from blue mussel Mytilus edulis. J Mol Biol. 2006, 357: 1500-1510. 10.1016/j.jmb.2006.01.044.
Costanzo S, Ospina-Giraldo MD, Deahl KL, Baker CJ, Jones RW: Alternate intron processing of family 5 endoglucanase transcripts from the genus Phytophthora. Curr Genet. 2007, 52: 115-123. 10.1007/s00294-007-0144-z.
Opassiri R, Pomthong B, Akiyama T, Nakphaichit M, Onkoksoong T, Cairns MK, Cairns JRK: A stress-induced rice (Oryza sativa L.) beta-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochem J. 2007, 408: 241-249. 10.1042/BJ20070734.
St John FJ, Gonzalez JM, Pozharski E: Consolidation of glycosyl hydrolase family 30: A dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett. 2010, 584: 4435-4441. 10.1016/j.febslet.2010.09.051.
Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B: Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel. 2006, 19: 555-562. 10.1093/protein/gzl044.
Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B: A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J. 2010, 432: 437-444. 10.1042/BJ20101185.
Hancock SM, Rich JR, Caines MEC, Strynadka NCJ, Withers SG: Designer enzymes for glycosphingolipid synthesis by directed evolution. Nat Chem Biol. 2009, 5: 508-514. 10.1038/nchembio.191.
Danchin EGJ, Rosso MN, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B, Abad P: Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA. 2010, 107: 17651-17656. 10.1073/pnas.1008486107.
Acuña R, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee S-J, Yeats TH, Egan AN, Doyle JJ, et al: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad U S A. 2012, 109: 4197-4202.
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004, 382: 769-781. 10.1042/BJ20040892.
Zhao YJ, Zhang YH, Cao Y, Qi JX, Mao LW, Xue YF, Gao F, Peng H, Wang XW, Gao GF, et al: Structural analysis of alkaline beta-mannanase from alkaliphilic Bacillus sp N16-5: implications for adaptation to alkaline conditions. PLoS One. 2011, 6: e14608-10.1371/journal.pone.0014608.
Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, et al: The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One. 2011, 6: e18814-10.1371/journal.pone.0018814.
Sakamoto T, Taniguchi Y, Suzuki S, Ihara H, Kawasaki H: Characterization of Fusarium oxysporum beta-1,6-galactanase, an enzyme that hydrolyzes larch wood arabinogalactan. Appl Environ Microbiol. 2007, 73: 3109-3112. 10.1128/AEM.02101-06.
Luonteri E, Laine C, Uusitalo S, Teleman A, Siika-aho M, Tenkanen M: Purification and characterization of Aspergillus beta-D-galactanases acting on beta-1,4- and beta-1,3/6-linked arabinogalactans. Carbohyd Polym. 2003, 53: 155-168. 10.1016/S0144-8617(02)00303-X.
Dodd D, Moon YH, Swaminathan K, Mackie RI, Cann IKO: Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem. 2010, 285: 30261-30273. 10.1074/jbc.M110.141788.
Sugino H, Furuichi S, Murao S, Arai M, Fujii T: Molecular characterization of a Rhodotorula-lytic enzyme from Paecilomyces lilacinus having beta-1,3-mannanase activity. Biosci Biotechnol Biochem. 2004, 68: 757-760. 10.1271/bbb.68.757.
Correia MAS, Mazumder K, Bras JLA, Firbank SJ, Zhu YP, Lewis RJ, York WS, Fontes CMGA, Gilbert HJ: Structure and function of an arabinoxylan-specific xylanase. J Biol Chem. 2011, 286: 22510-22520. 10.1074/jbc.M110.217315.
Deboy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, et al: Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol. 2008, 190: 5455-5463. 10.1128/JB.01701-07.
Caines MEC, Vaughan MD, Tarling CA, Hancock SM, Warren RAJ, Withers SG, Strynadka NCJ: Structural and mechanistic analyses of endo-glycoceramidase II, a membrane-associated family 5 glycosidase in the Apo and G(M3) ganglioside-bound forms. J Biol Chem. 2007, 282: 14300-14308. 10.1074/jbc.M611455200.
Ishibashi Y, Nakasone T, Kiyohara M, Horibata Y, Sakaguchi K, Hijikata A, Ichinose S, Omori A, Yasui Y, Imamura A, et al: A novel endoglycoceramidase hydrolyzes oligogalactosylceramides to produce galactooligosaccharides and ceramides. J Biol Chem. 2007, 282: 11386-11396. 10.1074/jbc.M608445200.
Zverlov VV, Velikodvorskaya GA, Schwarz WH: A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology. 2002, 148: 247-255.
Iakiviak M, Mackie RI, Cann IKO: Functional analyses of multiple lichenin-degrading enzymes from the rumen Bacterium Ruminococcus albus 8. Appl Environ Microbiol. 2011, 77: 7541-7550. 10.1128/AEM.06088-11.
Cho KK, Kim SC, Woo JH, Bok JD, Choi YJ: Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb Technol. 2000, 27: 475-481. 10.1016/S0141-0229(00)00256-8.
Tanabe T, Morinaga K, Fukamizo T, Mitsutomi M: Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity. Biosci Biotechnol Biochem. 2003, 67: 354-364. 10.1271/bbb.67.354.
Hong I-P, Jang H-K, Lee S-Y, Choi S-G: Cloning and characterization of a bifunctional cellulase-chitosanase gene from Bacillus licheniformis NBL420. J Microbiol Biotechnol. 2003, 13: 35-42.
Pedraza-Reyes M, Gutierrez-Corona F: The bifunctional enzyme chitosanase-cellulase produced by the gram-negative microorganism Myxobacter sp. AL-1 is highly similar to Bacillus subtilis endoglucanases. Arch Microbiol. 1997, 168: 321-327. 10.1007/s002030050505.
Yaoi K, Nakai T, Kameda Y, Hiyoshi A, Mitsuishi Y: Cloning and characterization of two xyloglucanases from Paenibacillus sp strain KM21. Appl Environ Microbiol. 2005, 71: 7670-7678. 10.1128/AEM.71.12.7670-7678.2005.
Foong FCF, Doi RH: Characterization and comparison of Clostridium cellulovorans endoglucanases-xylanases EngB and EngD hyperexpressed in Escherichia coli. J Bacteriol. 1992, 174: 1403-1409.
Schroder R, Wegrzyn TF, Sharma NN, Atkinson RG: LeMAN4 endo-beta-mannanase from ripe tomato fruit can act as a mannan transglycosylase or hydrolase. Planta. 2006, 224: 1091-1102. 10.1007/s00425-006-0286-0.
Dilokpimol A, Nakai H, Gotfredsen CH, Baumann MJ, Nakai N, Abou Hachem M, Svensson B: Recombinant production and characterisation of two related GH5 endo-beta-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity. Biochim Biophys Acta. 2011, 1814: 1720-1729. 10.1016/j.bbapap.2011.08.003.
Dias FMV, Vincent F, Pell G, Prates JAM, Centeno MSJ, Tailford LE, Ferreira LMA, Fontes CMGA, Davies GJ, Gilbert HJ: Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J Biol Chem. 2004, 279: 25517-25526. 10.1074/jbc.M401647200.
Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PCE, Sullivan PA, Cutfield JF: The structure of the exo-beta-(1,3)-glucanase from Candida albicans in native and bound forms: Relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol. 1999, 294: 771-783. 10.1006/jmbi.1999.3287.
Duenas-Santero E, Martin-Cuadrado AB, Fontaine T, Latge JP, del Rey F, de Aldana CV: Characterization of glycoside hydrolase family 5 proteins in Schizosaccharomyces pombe. Eukaryot Cell. 2010, 9: 1650-1660. 10.1128/EC.00187-10.
Schmidt S, Rainieri S, Witte S, Matern U, Martens S: Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol. 2011, 77: 1751-1757. 10.1128/AEM.01125-10.
Ishibashi Y, Ikeda K, Sakaguchi K, Okino N, Taguchi R, Ito M: Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J Biol Chem. 2012, 287: 368-381. 10.1074/jbc.M111.311340.
Mazzaferro LS, Breccia JD: Functional and biotechnological insights into diglycosidases. Biocatal Biotransfor. 2011, 29: 103-112. 10.3109/10242422.2011.594882.
Mazzaferro L, Pinuel L, Minig M, Breccia JD: Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid beta-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch Microbiol. 2010, 192: 383-393. 10.1007/s00203-010-0567-7.
Tsuruhami K, Mori S, Amarume S, Saruwatari S, Murata T, Hirakake J, Sakata K, Usui T: Isolation and characterization of a beta-primeverosidase-like enzyme from Penicillium multicolor. Biosci Biotechnol Biochem. 2006, 70: 691-698. 10.1271/bbb.70.691.
Pereira JH, Chen ZW, McAndrew RP, Sapra R, Chhabra SR, Sale KL, Simmons BA, Adams PD: Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. J Struct Biol. 2010, 172: 372-379. 10.1016/j.jsb.2010.06.018.
Wu TH, Huang CH, Ko TP, Lai HL, Ma YH, Chen CC, Cheng YS, Liu JR, Guo RT: Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochim Biophys Acta. 2011, 1814: 1832-1840. 10.1016/j.bbapap.2011.07.020.
Voget S, Steele HL, Streit WR: Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol. 2006, 126: 26-36. 10.1016/j.jbiotec.2006.02.011.
Khan MAS, Akbar M, Kitaoka M, Hayashi K: A unique thermostable lichenase from Thermotoga maritima MSB8 with divergent substrate specificity. Indian J Biotechnol. 2007, 6: 315-320.
Han YJ, Dodd D, Hespen CW, Ohene-Adjei S, Schroeder CM, Mackie RI, Cann IKO: Comparative analyses of two thermophilic enzymes exhibiting both beta-1,4 mannosidic and beta-1,4 glucosidic cleavage activities from Caldanaerobius polysaccharolyticus. J Bacteriol. 2010, 192: 4111-4121. 10.1128/JB.00257-10.
Wang WY, Thomson JA: Nucleotide sequence of the celA gene encoding a cellodextrinase of Ruminococcus flavefaciens Fd-1. Mol Gen Genet. 1990, 222: 265-269. 10.1007/BF00633827.
Matsui H, Ogata K, Tajima K, Nagamine T, Nakamura M, Aminov R, Benno Y: Cloning, expression, and characterization of a cellulase gene from Prevotella ruminicola. Anim Sci J. 2001, 72: 421-426.
Singh NA, Shanmugam V: Cloning and characterization of a bifunctional glycosyl hydrolase from an antagonistic Pseudomonas putida strain P3(4). J Basic Microbiol. 2012, 52: 340-349. 10.1002/jobm.201100232.
Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT: Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun. 2011, 2: 375-
Temuujin U, Kim JW, Kim JK, Lee BM, Kang HW: Identification of novel pathogenicity-related cellulase genes in Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol. 2011, 76: 152-157. 10.1016/j.pmpp.2011.08.004.
Bahari L, Gilad Y, Borovok I, Kahel-Raifer H, Dassa B, Nataf Y, Shoham Y, Lamed R, Bayer EA: Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum. J Ind Microbiol Biotechnol. 2011, 38: 825-832. 10.1007/s10295-010-0848-9.
Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N: Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J. 2005, 272: 1745-1755. 10.1111/j.1742-4658.2005.04606.x.
Qasba PK, Kumar S: Molecular divergence of lysozymes and alpha-lactalbumin. Crit Rev Biochem Mol Biol. 1997, 32: 255-306. 10.3109/10409239709082574.
Sinnott ML: Catalytic Mechanisms of Enzymatic Glycosyl Transfer. Chem Rev. 1990, 90: 1171-1202. 10.1021/cr00105a006.
The Arabidopsis Information Resource. http://www.arabidopsis.org,
Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010, 26: 2460-2461. 10.1093/bioinformatics/btq461.
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Price MN, Dehal PS, Arkin AP: FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010, 5: 9490-10.1371/journal.pone.0009490.
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.