Evolution of changes in cognitive function after the initiation of antiretroviral therapy
Tóm tắt
Cognitive function is reported to improve after the initiation of combination antiretroviral therapy (cART). Data on the evolution of such changes are limited. We assessed the dynamics of changes in cognitive parameters, in HIV-positive subjects initiating cART. Cognitive function in seven domains was evaluated for HIV-infected patients without clinically significant cognitive impairment prior to the initiation of cART, and 24 and 48 weeks after. Cognitive scores were transformed using standardised z-scores according to the pooled baseline standard deviation. Global, speed, and accuracy composite z-scores were calculated with changes calculated using a paired t test. In 14 subjects, change in global cognitive z-scores from baseline was by 0.08 at week 24 (p = 0.59) and 0.15 at week 48 (p = 0.43). Change in composite speed and accuracy z-scores from baseline at weeks 24/48 were 0.07/0.05 (p = 0.45/0.82) and 0.13/0.23 (p = 0.47/0.45), respectively. In two of the cognitive domains assessing speed (learning and monitoring time), a continued improvement from baseline to weeks 24 and 48 was observed (changes of 0.06–0.08 and 0.10–0.19, respectively), whereas in two domains (detection and identification) an initial improvement at week 24 (changes of −0.10 and 0.04 from baseline, respectively) was followed by a deterioration in score at week 48 (changes of −0.12 and −0.08 from baseline, respectively). None of these changes were statistically significant. A trend for improvement in cognitive function was observed in naïve HIV-positive patients starting cART. The dynamics of this improvement differed both between cognitive domains and the time-points assessed.
Tài liệu tham khảo
Report of a Working Group of the American Academy of Neurology AIDS Task Force. Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Neurology. 1991;41:778–85.
Sacktor N, Lyles RH, Skolasky R, Kleeberger C, Selnes OA, Miller EN, et al. HIV- associated neurologic disease incidence changes: multicenter AIDS Cohort Study, 1990–1998. Neurology. 2001;56:257–60.
Lescure F-X, Omland LH, Engsig FN, Roed C, Gerstoft J, Pialoux G, et al. Incidence and impact on mortality of severe neurocognitive disorders in persons with and without HIV infection: a Danish nationwide cohort study. Clin Infect Dis. 2011;52:235–43.
Hinkin CH, Castellon SA, Durvasula RS, Hardy DJ, Lam MN, Mason KI, et al. Medication adherence among HIV+ adults: effects of cognitive dysfunction and regimen complexity. Neurology. 2002;59:1944–50.
Al-Khindi T, Zakzanis KK, van Gorp WG. Does antiretroviral therapy improve HIV-associated cognitive impairment? A quantitative review of the literature. J Int Neuropsychol Soc. 2011;17:1–14.
Cysique LA, Vaida F, Letendre S, et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology. 2009;73:342–8.
Winston A, Puls R, Kerr SJ, et al. Dynamics of cognitive change in HIV-infected individuals commencing three different initial antiretroviral regimens: a randomized, controlled study. HIV Med. 2012;13:245–51.
Nightingale S, Winston a, Letendre S, et al. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol. 2014;13(11):1139–51.
Chan P, Brew BJ. HIV associated neurocognitive disorders in the modern antiviral treatment era: prevalence, characteristics, biomarkers, and effects of treatment. Curr HIV/AIDS Rep. 2014;11(3):317–24.
Lezac M. Neuropsychological Assessment. 3rd ed ed. New York: Oxford University Press; 1995.
Cysique LA, Maruff P, Darby D, Brew BJ. The assessment of cognitive function in advanced HIV-1 infection and AIDS dementia complex using a new computerised cognitive test battery. Arch Clin Neuropsychol. 2006;21:185–94.
Winston A, Puls R, Kerr SJ, Duncombe C, Li P, Gill JM, Ramautarsing R, Taylor-Robinson SD, Emery S, Cooper DA. ALTAIR Study Group. Differences in the direction of change of cerebral function parameters are evident over 3 years in HIV-infected individuals electively commencing initial cART. PLoS ONE. 2015;10(2):e0118608.
Hardy DJ, Hinkin CH. Reaction time performance in adults with HIV/AIDS. J Clin Exp Neuropsychol. 2002;24(7):912–29.
Gazzard BG, Anderson J, Babiker A, Boffito M, Brook G, Brough G, Churchill D, Cromarty B, Das S, Fisher M, Freedman A, Geretti AM, Johnson M, Khoo S, Leen C, Nair D, Peters B, Phillips A, Pillay D, Pozniak A, Walsh J, Wilkins E, Williams I, Williams M, Youle M. BHIVA treatment guidelines writing group. British HIV association guidelines for the treatment of HIV-1-infected adults with antiretroviral therapy 2008. HIV Med. 2008;9(8):563–608.
INSIGHT START Study Group, Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, Sharma S, Avihingsanon A, Cooper DA, Fätkenheuer G, Llibre JM, Molina JM, Munderi P, Schechter M, Wood R, Klingman KL, Collins S, Lane HC, Phillips AN, Neaton JD. Initiation of antiretroviral therapy in early asymptomatic hiv infection. N Engl J Med. 2015;373(9):795–807.
Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 14 Oct 2015.
Churchill D, Waters L, Ahmed N, Angus B, Boffito M, Bower M, Dunn D, Edwards S, Emerson C, Fidler S, Fisher M, Horne R, Khoo S, Leen C, Mackie N, Marshall N, Monteiro F, Nelson M, Orkin C, Palfreeman A, Pett S, Phillips A, Post F, Pozniak A, Reeves I, Sabin C, Trevelion R, Walsh J, Wilkins E, Williams I, Winston A British HIV Association guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy 2015. http://www.bhiva.org/documents/Guidelines/Treatment/2015/2015-treatment-guidelines.pdf. Accessed 19 Oct 2015.