Evolution of Streptococcus pneumoniae Serotype 3 in England and Wales: A Major Vaccine Evader
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ladhani, 2018, Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–2017: A prospective national observational cohort study, Lancet Infect. Dis., 18, 441, 10.1016/S1473-3099(18)30052-5
Andrews, 2019, Effectiveness of the seven-valent and thirteen-valent pneumococcal conjugate vaccines in England: The indirect cohort design, 2006–2018, Vaccine, 37, 4491, 10.1016/j.vaccine.2019.06.071
Choi, 2016, Capsular polysaccharide (CPS) release by serotype 3 pneumococcal strains reduces the protective effect of anti-type 3 CPS antibodies, Clin. Vaccine Immunol., 23, 162, 10.1128/CVI.00591-15
Southern, J., Andrews, N., Sandu, P., Sheppard, C.L., Waight, P.A., Fry, N.K., Van Hoek, A.J., and Miller, E. (2018). Pneumococcal carriage in children and their household contacts six years after introduction of the 13-valent pneumococcal conjugate vaccine in England. PLoS ONE, 13.
Kandasamy, R., Voysey, M., Collins, S., Berbers, G., Robinson, H., Noel, I., Hughes, H., Ndimah, S., Gould, K., and Fry, N. (2019). Persistent circulation of vaccine serotypes and serotype replacement after five years of UK infant immunisation with PCV13. J. Infect. Dis., jiz178.
Croucher, N.J., Mitchell, A.M., Gould, K.A., Inverarity, D., Barquist, L., Feltwell, T., Fookes, M.C., Harris, S.R., Dordel, J., and Salter, S.J. (2013). Dominant role of nucleotide substitution in the diversification of serotype 3 pneumococci over decades and during a single infection. PLoS Genet., 9.
Azarian, T., Mitchell, P.K., Georgieva, M., Thompson, C.M., Ghouila, A., Pollard, A.J., Von Gottberg, A., Du Plessis, M., Antonio, M., and Kwambana-Adams, B.A. (2018). Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog., 14.
Mitchell, 2019, Population genomics of pneumococcal carriage in Massachusetts children following introduction of PCV-13, Microb. Genom., 5, e000252
Hussain, 2005, A longitudinal household study of Streptococcus pneumoniae nasopharyngeal carriage in a UK setting, Epidemiol. Infect., 133, 891, 10.1017/S0950268805004012
Flasche, S., Van Hoek, A.J., Sheasby, E., Waight, P., Andrews, N., Sheppard, C., George, R., and Miller, E. (2011). Effect of pneumococcal conjugate vaccination on serotype-specific carriage and invasive disease in England: A cross-sectional study. PLoS Med., 8.
Sheppard, 2014, Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England, Vaccine, 32, 4349, 10.1016/j.vaccine.2014.03.017
Kapatai, 2016, Whole genome sequencing of Streptococcus pneumoniae: Development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline, PeerJ, 4, e2477, 10.7717/peerj.2477
Tewolde, 2016, MOST: A modified MLST typing tool based on short read sequencing, PeerJ, 4, e2308, 10.7717/peerj.2308
Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol., 13.
Lees, 2019, Fast and flexible bacterial genomic epidemiology with PopPUNK, Genome Res., 29, 304, 10.1101/gr.241455.118
Shannon, 2003, Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res., 13, 2498, 10.1101/gr.1239303
Kamada, 1989, An algorithm for drawing general undirected graphs, Inf. Process. Lett., 31, 7, 10.1016/0020-0190(89)90102-6
Li, 2009, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754, 10.1093/bioinformatics/btp324
McKenna, 2010, The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res., 20, 1297, 10.1101/gr.107524.110
Stamatakis, 2014, RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312, 10.1093/bioinformatics/btu033
Yu, 2017, ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data, Methods Ecol. Evol., 8, 28, 10.1111/2041-210X.12628
Rambaut, 2016, Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen), Virus Evol., 2, vew007, 10.1093/ve/vew007
Inouye, 2014, SRST2: Rapid genomic surveillance for public health and hospital microbiology labs, Genome Med., 6, 90, 10.1186/s13073-014-0090-6
Hollingshead, 2000, Diversity of PspA: Mosaic genes and evidence for past recombination in Streptococcus pneumoniae, Infect. Immun., 68, 5889, 10.1128/IAI.68.10.5889-5900.2000
Kawaguchiya, 2018, Genetic diversity of pneumococcal surface protein A (PspA) in paediatric isolates of non-conjugate vaccine serotypes in Japan, J. Med. Microbiol., 67, 1130, 10.1099/jmm.0.000775
Metcalf, 2016, Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States, Clin. Microbiol. Infect., 22, 1002.e1, 10.1016/j.cmi.2016.08.001
Seemann, 2014, Prokka: Rapid prokaryotic genome annotation, Bioinformatics, 30, 2068, 10.1093/bioinformatics/btu153
Bentley, S.D., Aanensen, D.M., Mavroidi, A., Saunders, D., Rabbinowitsch, E., Collins, M., Donohoe, K., Harris, D., Murphy, L., and Quail, M.A. (2006). Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet., 2.
Li, 2011, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, Bioinformatics, 27, 2987, 10.1093/bioinformatics/btr509
Gladstone, 2019, International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact, EBioMedicine, 43, 338, 10.1016/j.ebiom.2019.04.021
Azarian, 2017, Association of pneumococcal protein antigen serology with age and antigenic profile of colonizing isolates, J. Infect. Dis., 215, 713