Sự tiến hóa và ý nghĩa địa hóa học hữu cơ của các sesquiterpane bicyclic trong các thí nghiệm mô phỏng nhiệt phân trên đá bùn giàu hữu cơ chưa trưởng thành

Elsevier BV - Tập 16 - Trang 502-512 - 2019
Gang Yan1,2, Yao-Hui Xu1,2, Yan Liu3, Peng-Hai Tang1,2, Wei-Bin Liu4
1Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan, China
2College of Resources and Environment, Yangtze University, Wuhan, China
3Institute of Mud Logging Technology and Engineering, Yangtze University, Jingzhou, China
4Oil and Gas Survey, China Geological Survey, Beijing, China

Tóm tắt

Các sesquiterpane là thành phần phổ biến có trong dầu thô và sediment cổ. Các hydrocarbon bão hòa lỏng từ các thí nghiệm nhiệt phân mô phỏng trên đá bùn giàu hữu cơ chưa trưởng thành được thu thập từ hạ Creta tại chỗ Hesigewula đã được phân tích bằng sắc ký khí – khối phổ (GC–MS). Các sesquiterpane bicyclic C14, cụ thể là 8β(H)-drimane, 8β(H)-homodrimane và 8α(H)-homodrimane, đã được phát hiện và xác định dựa trên các ion fragment chẩn đoán của chúng (m/z 123, 179, 193 và 207), cùng với các dữ liệu phổ khối đã công bố trước đó, và các sesquiterpane bicyclic này cho thấy các đặc điểm tương đối đồng đều trong sự tiến hóa nhiệt của chúng. Các tỷ lệ 8β(H)-drimane/8β(H)-homodrimane, 8β(H)-homodrimane/8α(H)-homodrimane và 8β(H)-drimane/8α(H)-homodrimane đều cho thấy xu hướng tăng rõ rệt khi nhiệt độ tăng dưới điểm nhiệt độ chuyển tiếp. Do đó, tất cả các tỷ lệ này có thể được sử dụng như các chỉ số tiến hóa của đá nguồn trong giai đoạn chưa trưởng thành – ít trưởng thành. Tuy nhiên, hai tỷ lệ cuối có thể phù hợp hơn so với tỷ lệ đầu tiên như các tham số hợp lệ để đo độ tiến hóa nhiệt của vật chất hữu cơ trong giai đoạn chưa trưởng thành – ít trưởng thành vì biên độ biến đổi của chúng với nhiệt độ tăng rõ rệt hơn.

Từ khóa

#sesquiterpanes #nhiệt phân #đá bùn #địa hóa học hữu cơ #sự tiến hóa nhiệt #chỉ số tiến hóa

Tài liệu tham khảo

Alexander R, Kagi R, Noble R. Identification of the bicyclic sesquiterpenes drimane and eudesmane in petroleum. J Chem Soc Chem Commun. 1983;5:226–8. https://doi.org/10.1039/c39830000226. Alexander R, Kagi RI, Noble R, et al. Identification of some bicyclic alkanes in petroleum. Org Geochem. 1984;6:63–72. https://doi.org/10.1016/0146-6380(84)90027-5. Anders DE, Robinson WE. Cycloalkane constituents of the bitumen from Green River Shale. Geochim Cosmochim Acta. 1971;35(7):661–78. https://doi.org/10.1016/0016-7037(71)90065-2. Bao JP, Zhu CS, Wang ZF. Typical end-member oil derived from Cambrian-Lower Ordovician source rocks in the Tarim Basin, NW China. Pet Explor Dev. 2018;45(6):1177–88. https://doi.org/10.1016/S1876-3804(18)30121-6. Bendoraitis JG. Hydrocarbons of biogenic origin in petroleum-aromatic triterpenes and bicyclic sesquiterpenes. Adv Org Geochem. 1973;1974:209–24. Cesar J, Grice K. Drimane-type compounds in source rocks and fluids from fluvial-deltaic depositional settings in the North-West Shelf of Australia. Org Geochem. 2018;116:103–12. https://doi.org/10.1016/j.orggeochem.2017.11.012. Cheng KM, Jin WM, He ZH, et al. Application of sesquiterpanes to the study of oil-gas source—the gas-rock correlation in the Qiongdongnan Basin. J Southeast Asian Earth Sci. 1991;5(1–4):189–95. https://doi.org/10.1016/0743-9547(91)90025-s. Dimmler A, Cyr TD, Strausz OP. Identification of bicyclic terpenoid hydrocarbons in the saturate fraction of Athabasca oil sand bitumen. Org Geochem. 1984;7(3–4):231–8. https://doi.org/10.1016/0146-6380(84)90119-0. Fu JH, Deng XQ, Wang Q, et al. Densification and hydrocarbon accumulation of Triassic Yanchang Formation Chang 8 Member, Ordos Basin, NW China: evidence from geochemistry and fluid inclusions. Pet Explor Dev. 2017;44(1):48–57. https://doi.org/10.1016/S1876-3804(17)30007-1. Fu ST, Fu JH, Yu J, et al. Petroleum geological features and exploration prospect of Linhe Depression in Hetao Basin, China. Pet Explor Dev. 2018;45(5):803–17. https://doi.org/10.1016/S1876-3804(18)30084-3. Gao G, Zhang WW, Ma GF, et al. Mineral composition and organic geochemistry of the Lower Cretaceous Xiagou Formation source rock from the Qingxi Sag, Jiuquan Basin, Northwest China. Pet Sci. 2018;15(1):51–67. https://doi.org/10.1007/s12182-017-0213-y. Hartkopf-Fröder C, Königshof P, Littke R, et al. Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: a review. Int J Coal Geol. 2015;150:74–119. https://doi.org/10.1016/j.coal.2015.06.005. Hou W, Yang BJ, Zheng L, et al. Change of bicyclic sesquiterpenes distribution in crude oils by simulated coastal oil spill biodegradation. Environ Chem. 2013;32(9):1639–45. https://doi.org/10.7524/j.issn.0254-6108.2013.09.006 (in Chinese). Huang GH, Xiao ZY, Wang PR, et al. The occurrence and significance of terpenoids in Hade 4 oilfield and correlative areas, Tarim Basin. Nat Gas Geosci. 2004;15(2):128–32. https://doi.org/10.3969/j.issn.1672-1926.2004.02.006 (in Chinese). Ji LM, Liang XF, He C, et al. Distribution of bicyclic alkanes of source rocks of Yanchang Formation in Xifeng area of Ordos basin and their biological sources. J Earth Sci Environ. 2015;37(1):76–84. https://doi.org/10.3969/j.issn.1672-6561.2015.01.008 (in Chinese). Ji L, He C, Zhang M, et al. Bicyclic alkanes in source rocks of the Triassic Yanchang Formation in the Ordos Basin and their inconsistency in oil-source correlation. Mar Pet Geol. 2016;72:359–73. https://doi.org/10.1016/j.marpetgeo.2016.02.021. Jiang ZS, Philp RP, Lewis CA. Identification of novel bicyclic alkanes from steroid precursors in crude oils from Kelamayi oilfield of China. Geochim Cosmochim Acta. 1988;52(2):491–8. https://doi.org/10.1016/0016-7037(88)90104-4. Lu SF, Zhang M. Geochemistry of oil and gas. Beijing: Petroleum Industry Press; 2008. p. 177–87 (in Chinese). Luo BJ, Wang YX, Meng QX, et al. The geochemical significance of bicyclic sesquiterpanes in oil, coal and sediments. Sci China Ser B. 1990;4:419–30 (in Chinese). Mashhadi ZS, Rabbani AR, Kamali MR, et al. Burial and thermal maturity modeling of the Middle Cretaceous-Early Miocene petroleum system, Iranian sector of the Persian Gulf. Pet Science. 2015;12(3):367–90. https://doi.org/10.1007/s12182-015-0040-y. Noble RA. A geochemical study of bicyclic alkanes and diterpenoid hydrocarbons in crude oils, sediments and coals. Ph. D. Thesis, Department of Organic Chemistry, University of Western Australia. 1986. Noble RA, Alexander R, Kagi RI. Configurational isomerization in sedimentary bicyclic alkanes. Org Geochem. 1987;11(3):151–6. https://doi.org/10.1016/0146-6380(87)90018-0. Nytoft HP, Samuel OJ, Kildahl-Andersen G, et al. Novel C15 sesquiterpanes in Niger delta oils; structural identification and potential application as new markers of angiosperm input in light oils. Org Geochem. 2009;40(5):595–603. https://doi.org/10.1016/j.orggeochem.2009.02.003. Philp RP, Gilbert TD, Friedrich J. Bicyclic sesquiterpenoids and diterpenoids in Australian crude oils. Geochim Cosmochim Acta. 1981;45(7):1173–80. https://doi.org/10.1016/0016-7037(81)90140-x. Song X, Zhang B, Chen B, et al. Use of sesquiterpanes, steranes, and terpanes for forensic fingerprinting of chemically dispersed oil. Water Air Soil Pollut. 2016;227(8):281. https://doi.org/10.1007/s11270-016-2981-1. Stout SA, Uhler AD, McCarthy KJ. Middle distillate fuel fingerprinting using drimane-based bicyclic sesquiterpenes. Environ Forensics. 2005;6(3):241–51. https://doi.org/10.1080/15275920500194407. Wang LQ, Bao JP, Ma DD, et al. Distributions and compositions of sesquiterpanoids and thermal maturation of organic matter in the lower mature source rocks. Geochimica. 2005a;34(2):173–9. https://doi.org/10.3321/j.issn:0379-1726.2005.02.010 (in Chinese). Wang PR. Biomarkers mass chromatography atlas. Beijing: Petroleum Industry Press; 1993. p. 11–8 (in Chinese). Wang XF, Andreas H, Xiao JX, et al. Graptolite, chitinozoan and scolecodont reflectances and their use as indicators of thermal maturity. Acta Geol Sin Engl Ed. 1993;6(1):93–105. https://doi.org/10.1111/j.1755-6724.1993.mp6001006.x. Wang YP, Zhao CY, Wang ZY, et al. Determining the main gas-generation phase of marine organic matters in different occurrence states using the kinetic method. Acta Geol Sin Engl Ed. 2008;82(1):197–205. https://doi.org/10.1111/j.1755-6724.2008.tb00338.x. Wang Z, Yang C, Fingas M, et al. Characterization, weathering, and application of sesquiterpanes to source identification of spilled lighter petroleum products. Environ Sci Technol. 2005b;39(22):8700–7. https://doi.org/10.1021/es051371o. Weston RJ, Philp RP, Sheppard CM, et al. Sesquiterpanes, diterpanes and other higher terpanes in oils from the Taranaki basin of New Zealand. Org Geochem. 1989;14(4):405–21. https://doi.org/10.1016/0146-6380(89)90006-5. Xia YQ, Luo BJ. The study on formation and evolution of bicyclic sesquiterpane by means of pyrolysis. Acta Sedimentol Sin. 1994;3:106–13 (in Chinese). Xu Z, Zhang CM, Liu Q, et al. Distribution of bicyclic sesquiterpenes and its significance in Wen’an oilfield Jizhong depression. J Earth Sci Environ. 2010;32(4):368–71. https://doi.org/10.3969/j.issn.1672-6561.2010.04.007 (in Chinese). Yang BJ, Zheng L, Zhang KY, et al. Oil fingerprint analysis of bicyclic sesquiterpanes by internal standard method and oil identification. J Instrum Anal. 2012;31(11):1421–5. https://doi.org/10.3969/j.issn.1004-4957.2012.11.014 (in Chinese). Yang C, Wang ZD, Hollebone BP, et al. Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products. J Chromatogr A. 2009;1216(20):4475–84. https://doi.org/10.1016/j.chroma.2009.03.024. Yessalina S, Suzuki N, Saito H. Geochemical characteristics of Tertiary Sagara oil from an active forearc basin, Shizuoka, Japan. Island Arc. 2006;15(3):292–303. https://doi.org/10.1111/j.1440-1738.2006.00529.x. Zhang CM, Sun FJ, Lin Q, et al. Distribution of bicyclic sesquiterpanes in Q HD32-6 oilfield and its significance. China Offshore Oil Gas. 2005;17(4):228–30. https://doi.org/10.3969/j.issn.1673-1506.2005.04.003 (in Chinese). Zhang WJ, Zhang M. Biomarker characteristics of saturated hydrocarbon in typical marine oils and typical coal-formed oils. J Oil Gas Technol. 2012;34(6):25–8. https://doi.org/10.3969/j.issn.1000-9752.2012.06.006 (in Chinese). Zhao Y, Cai JG, Lei TZ, et al. A geochemical investigation of the free and carbonate-bound organic matter in the clay-sized fraction of argillaceous source rocks and its significance for biogenic interpretation. Pet Sci. 2018;15(4):681–94. https://doi.org/10.1007/s12182-018-0257-7. Zhu YM, Xie JM, Sun LT, et al. Identification and geochemical significances of novel bicyclic and tetracyclic terpanes in crude oils from the Pearl River Mouth Basin. Geochimica. 2015;44(4):313–22. https://doi.org/10.3969/j.issn.0379-1726.2015.04.001 (in Chinese). Zou YR, Yang Q, Liu DM, et al. Maturity control on the patterns of hydrocarbon regeneration from coal. Acta Geol Sin Eng Ed. 2000;74(2):370–4. https://doi.org/10.1111/j.1755-6724.2000.tb00476.x.