Evidences for tangential migrations in Xenopus telencephalon: Developmental patterns and cell tracking experiments

Developmental Neurobiology - Tập 68 Số 4 - Trang 504-520 - 2008
Nerea Moreno1, Agustı́n González2,1,3, Sylvie Rétaux2,3
1Departamento de Biologia Celular, Facultad de Biologia (Av. Jose Antonio Novais, 2, 28040 Madrid - Spain)
2DEPSN - Développement, évolution et plasticité du système nerveux (D.E.P.S.N, I.N.A.F. 1 av. de la Terrasse - Bât 32/33 91198 GIF SUR YVETTE CEDEX - France)
3INAF - Institut de Neurobiologie Alfred Fessard (Bât. 32/33 1 Avenue de la terrasse 91198 GIF SUR YVETTE CEDEX - France)

Tóm tắt

AbstractExtensive tangential cell migrations have been described in the developing mammalian, avian, and reptilian forebrain, and they are viewed as a powerful developmental mechanism to increase neuronal complexity in a given brain structure. Here, we report for the first time anatomical and cell tracking evidence for the presence of important migratory processes in the developing forebrain of the anamniote Xenopus laevis. Combining developmental gene expression patterns (Pax6, Nkx2.1, Isl1, Lhx5, Lhx9, and Dll3), neurotransmitter identity (GABA, NOS, ChAT), and connectivity information, several types of putative migratory cell populations and migration routes originating in the ventral pallium and the subpallium are proposed. By means of in vivo cell tracking experiments, pallio‐subpallial and subpallio‐pallial migrating neurons are visualized. Among them, populations of Nkx2.1+ striatal interneurons and pallial GABAergic interneurons, which also express the migratory marker doublecortin, are identified. Finally, we find that these tangentially migrating pallial interneurons travel through an “isl1‐free channel” that may guide their course through the subpallium. Our findings strongly suggest that the developing Xenopus telencephalon shares many similarities with amniotes in terms of neuronal specification and migrations. However, some differences are discussed, particularly with regard to the evolution of the pallium. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008

Từ khóa


Tài liệu tham khảo

10.1523/JNEUROSCI.1245-04.2004

10.1006/exnr.2002.7870

10.1016/j.mod.2004.03.023

10.1126/science.278.5337.474

10.1242/dev.128.3.353

10.1016/S0925-4773(02)00199-5

10.1097/00001756-200202110-00002

10.1016/j.ydbio.2005.10.023

Bachy I, 2001, The LIM‐homeodomain gene family in the developing Xenopus brain: Conservation and divergences with the mouse related to the evolution of the forebrain, J Neurosci, 21, 7620, 10.1523/JNEUROSCI.21-19-07620.2001

10.1002/cne.903070312

10.1002/cne.10688

10.1002/cne.20152

10.1016/S0165-3806(98)00089-3

10.1523/JNEUROSCI.3092-06.2006

10.1016/j.neuron.2005.04.011

10.1006/dbio.2001.0422

10.1016/j.brainres.2006.12.088

10.1111/j.1460-9568.2005.04141.x

10.1016/S1567-133X(02)00015-7

10.1016/S0306-4522(02)00326-3

González‐Granero S, 2006, Does tangencial migration to olfactory bulb exist in lizards?, Federation of European Neuroscience (FENS) (Abstract), 3, 230

10.1046/j.1432-0436.2002.700404.x

10.1093/cercor/11.5.474

10.1242/dev.129.21.5041

10.1002/cne.10419

10.1016/j.cell.2006.01.042

10.1111/j.1471-4159.2005.03261.x

Marín O, 2000, Origin and molecular specification of striatal interneurons, J Neurosci, 20, 6063, 10.1523/JNEUROSCI.20-16-06063.2000

10.1038/35097509

10.1146/annurev.neuro.26.041002.131058

10.1002/(SICI)1096-9861(19970616)382:4<499::AID-CNE6>3.0.CO;2-Y

10.1002/(SICI)1096-9861(19980316)392:3<285::AID-CNE2>3.0.CO;2-Y

10.1016/S0166-2236(98)01297-1

10.1016/j.brainresbull.2005.02.003

10.1002/cne.20141

10.1002/cne.10209

10.1242/dev.02780

10.1242/dev.02869

10.1002/bies.10100

10.1097/00001756-200312190-00013

10.1002/cne.20046

10.1016/j.pneurobio.2005.12.005

10.1002/cne.21422

10.1111/j.1469-7580.2007.00780.x

10.1111/j.0953-816X.2004.03415.x

Murakami Y, 2001, Identification and expression of the lamprey Pax6 gene: Evolutionary origin of the segmented brain of vertebrates, Development, 128, 3521, 10.1242/dev.128.18.3521

10.1016/j.ydbio.2005.02.008

10.1046/j.0953-816x.2001.01683.x

10.1007/978-3-642-18262-4

Nieuwkoop PD, 1967, Normal Table of Xenopus laevis (Daudin)

10.1016/j.ydbio.2005.08.042

10.1016/S0896-6273(00)00149-5

10.1002/1096-9861(20000828)424:3<409::AID-CNE3>3.0.CO;2-7

10.1016/S0166-2236(03)00234-0

10.1016/S0165-0173(98)00016-2

10.1523/JNEUROSCI.0001-04.2004

Stoykova A, 1994, Roles of Pax‐genes in developing and adult brain as suggested by expression patterns, JNeurosci, 14, 1395, 10.1523/JNEUROSCI.14-03-01395.1994

10.1159/000112991

10.1242/dev.126.15.3359

10.1523/JNEUROSCI.17-21-08313.1997

10.1097/00001756-200103260-00032

10.1523/JNEUROSCI.3014-04.2005

Toresson H, 2000, Genetic control of dorsal–ventral identity in the telencephalon: Opposing roles for Pax6 and Gsh2, Development, 127, 4361, 10.1242/dev.127.20.4361

10.1111/j.1460-9568.2003.03059.x

10.1016/S0306-4522(00)00590-X

10.1242/dev.128.19.3759

10.1016/S0896-6273(00)00171-9

10.1002/cne.20183

10.1242/dev.128.2.193

10.1073/pnas.1537759100