Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates
Tóm tắt
Tuberculosis presents a global health challenge.
Từ khóa
Tài liệu tham khảo
Global tuberculosis report 2017. (World Health Organization, 2017).
Coscolla, M. & Gagneux, S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26, 431–444, https://doi.org/10.1016/j.smim.2014.09.012 (2014).
Hershberg, R. Human host range of Mycobacterium tuberculosis. Nat Genet 48, 1453–1454, https://doi.org/10.1038/ng.3724 (2016).
Hirsh, A. E., Tsolaki, A. G., DeRiemer, K., Feldman, M. W. & Small, P. M. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101, 4871–4876, https://doi.org/10.1073/pnas.0305627101 (2004).
Gagneux, S. et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103, 2869–2873, https://doi.org/10.1073/pnas.0511240103 (2006).
Fenner, L. et al. HIV infection disrupts the sympatric host-pathogen relationship in human tuberculosis. PLoS Genet 9, e1003318, https://doi.org/10.1371/journal.pgen.1003318 (2013).
Stucki, D. et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 48, 1535–1543, https://doi.org/10.1038/ng.3704 (2016).
van Crevel, R. et al. Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis 200, 1671–1674, https://doi.org/10.1086/648477 (2009).
Toyo-Oka, L. et al. Strain-based HLA association analysis identified HLA-DRB1*09:01 associated with modern strain tuberculosis. HLA. https://doi.org/10.1111/tan.13070 (2017).
Omae, Y. et al. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet. https://doi.org/10.1038/jhg.2017.82 (2017).
Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264, 6–24, https://doi.org/10.1111/imr.12264 (2015).
Niemann, S., Merker, M., Kohl, T. A. & Supply, P. Impact of genetic diversity on the biology of Mycobacterium tuberculosis complex strains Microbiology Spectrum 4, TBTB2-0022-2016 (2016).
Tientcheu, L. D. et al. Immunological consequences of strain variation within the Mycobacterium tuberculosis complex. Eur J Immunol 47, 432–445, https://doi.org/10.1002/eji.201646562 (2017).
Tsolaki, A. G. et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci USA 101, 4865–4870, https://doi.org/10.1073/pnas.0305634101 (2004).
Mbugi, E. V. et al. Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS One 11, e0154571, https://doi.org/10.1371/journal.pone.0154571 (2016).
Ismail, F. et al. Study of Mycobacterium tuberculosis complex genotypic diversity in Malaysia reveals a predominance of ancestral East-African-Indian lineage with a Malaysia-specific signature. PLoS One 9, e114832, https://doi.org/10.1371/journal.pone.0114832 (2014).
Nguyen, V. A. et al. High prevalence of Beijing and EAI4-VNM genotypes among M. tuberculosis isolates in northern Vietnam: sampling effect, rural and urban disparities. PLoS One 7, e45553, https://doi.org/10.1371/journal.pone.0045553 (2012).
Click, E. S., Winston, C. A., Oeltmann, J. E., Moonan, P. K. & Mac Kenzie, W. R. Association between Mycobacterium tuberculosis lineage and time to sputum culture conversion. Int J Tuberc Lung Dis 17, 878–884, https://doi.org/10.5588/ijtld.12.0732 (2013).
Buu, T. N. et al. The Beijing genotype is associated with young age and multidrug-resistant tuberculosis in rural Vietnam. Int J Tuberc Lung Dis 13, 900–906 (2009).
Shanmugam, S., Selvakumar, N. & Narayanan, S. Drug resistance among different genotypes of Mycobacterium tuberculosis isolated from patients from Tiruvallur, South India. Infect Genet Evol 11, 980–986, https://doi.org/10.1016/j.meegid.2011.03.011 (2011).
Click, E. S., Moonan, P. K., Winston, C. A., Cowan, L. S. & Oeltmann, J. E. Relationship between Mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis 54, 211–219, https://doi.org/10.1093/cid/cir788 (2012).
Portevin, D., Gagneux, S., Comas, I. & Young, D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7, e1001307, https://doi.org/10.1371/journal.ppat.1001307 (2011).
Reiling, N. et al. Clade-specific virulence patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice. MBio 4, https://doi.org/10.1128/mBio.00250-13 (2013).
Uplekar, M. et al. WHO’s new end TB strategy. Lancet 385, 1799–1801, https://doi.org/10.1016/S0140-6736(15)60570-0 (2015).
Collins, C. H., Yates, M. D. & Grange, J. M. Subdivision of Mycobacterium tuberculosis into five variants for epidemiological purposes: methods and nomenclature. J Hyg (Lond) 89, 235–242 (1982).
Trial of BCG vaccines in south India for tuberculosis prevention: first report–Tuberculosis Prevention Trial. Bull World Health Organ 57, 819–827 (1979).
Coll, F. et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5, 4812, https://doi.org/10.1038/ncomms5812 (2014).
Vongpaisarnsin, K., Listman, J. B., Malison, R. T. & Gelernter, J. Ancestry informative markers for distinguishing between Thai populations based on genome-wide association datasets. Leg Med (Tokyo) 17, 245–250, https://doi.org/10.1016/j.legalmed.2015.02.004 (2015).
Brunelli, A. et al. Y chromosomal evidence on the origin of northern Thai people. PLoS One 12, e0181935, https://doi.org/10.1371/journal.pone.0181935 (2017).
Demay, C. et al. SITVITWEB–a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12, 755–766, https://doi.org/10.1016/j.meegid.2012.02.004 (2012).
Flores, L. et al. Large sequence polymorphisms classify Mycobacterium tuberculosis strains with ancestral spoligotyping patterns. J Clin Microbiol 45, 3393–3395, https://doi.org/10.1128/JCM.00828-07 (2007).
Palittapongarnpim, P. et al. Restriction fragment length polymorphism study of Mycobacterium tuberculosis in Thailand using IS6110 as probe. Int J Tuberc Lung Dis 1, 370–376 (1997).
Soares, P. A. et al. Resolving the ancestry of Austronesian-speaking populations. Hum Genet 135, 309–326, https://doi.org/10.1007/s00439-015-1620-z (2016).
Regueiro, M. et al. Austronesian genetic signature in East African Madagascar and Polynesia. J Hum Genet 53, 106–120, https://doi.org/10.1007/s10038-007-0224-4 (2008).
Aleksic, E. et al. First molecular epidemiology study of Mycobacterium tuberculosis in Kiribati. PLoS One 8, e55423, https://doi.org/10.1371/journal.pone.0055423 (2013).
Ballif, M. et al. Genetic diversity of Mycobacterium tuberculosis in Madang, Papua New Guinea. Int J Tuberc Lung Dis 16, 1100–1107, https://doi.org/10.5588/ijtld.11.0779 (2012).
Ley, S. D. et al. Diversity of Mycobacterium tuberculosis and drug resistance in different provinces of Papua New Guinea. BMC Microbiol 14, 307, https://doi.org/10.1186/s12866-014-0307-2 (2014).
Frink, S. et al. Rapid deletion-based subtyping system for the Manila family of Mycobacterium tuberculosis. J Clin Microbiol 49, 1951–1955, https://doi.org/10.1128/JCM.01338-10 (2011).
Ferdinand, S. et al. A study of spoligotyping-defined Mycobacterium tuberculosis clades in relation to the origin of peopling and the demographic history in Madagascar. Infect Genet Evol 5, 340–348, https://doi.org/10.1016/j.meegid.2004.10.002 (2005).
Miranda-Barros, F. et al. Y Chromosome STR haplotypes in different ethnic groups of Vietnam. Forensic Sci Int Genet 22, e18–e20, https://doi.org/10.1016/j.fsigen.2016.02.007 (2016).
Norhalifah, H. K., Syaza, F. H., Chambers, G. K. & Edinur, H. A. The genetic history of Peninsular Malaysia. Gene 586, 129–135, https://doi.org/10.1016/j.gene.2016.04.008 (2016).
Peng, M. S. et al. Tracing the Austronesian footprint in Mainland Southeast Asia: a perspective from mitochondrial DNA. Mol Biol Evol 27, 2417–2430, https://doi.org/10.1093/molbev/msq131 (2010).
Chen, Y. Y. et al. Molecular epidemiology of tuberculosis in Kaohsiung City located at southern Taiwan, 2000-2008. PLoS One 10, e0117061, https://doi.org/10.1371/journal.pone.0117061 (2015).
Buu, T. N. et al. Increased transmission of Mycobacterium tuberculosis Beijing genotype strains associated with resistance to streptomycin: a population-based study. PLoS One 7, e42323, https://doi.org/10.1371/journal.pone.0042323 (2012).
Coscolla, M. & Gagneux, S. Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7, e43–e59, https://doi.org/10.1016/j.ddmec.2010.09.004 (2010).
Haque, M. F. et al. Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains. Innate Immun 21, 746–758, https://doi.org/10.1177/1753425915594245 (2015).
Chen, Y. Y. et al. The pattern of cytokine production in vitro induced by ancient and modern Beijing Mycobacterium tuberculosis strains. PLoS One 9, e94296, https://doi.org/10.1371/journal.pone.0094296 (2014).
Narayanan, S. et al. Genomic interrogation of ancestral Mycobacterium tuberculosis from south India. Infect Genet Evol 8, 474–483, https://doi.org/10.1016/j.meegid.2007.09.007 (2008).
Mahasirimongkol, S. et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 10, 77–83, https://doi.org/10.1038/gene.2008.81 (2009).
Alcais, A., Abel, L. & Casanova, J. L. Human genetics of infectious diseases: between proof of principle and paradigm. J Clin Invest 119, 2506–2514, https://doi.org/10.1172/JCI38111 (2009).
Tsolaki, A. G. et al. Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 43, 3185–3191, https://doi.org/10.1128/JCM.43.7.3185-3191.2005 (2005).
Kamerbeek, J. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907–914 (1997).
Coll, F. et al. SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences. Bioinformatics 28, 2991–2993, https://doi.org/10.1093/bioinformatics/bts544 (2012).
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191, https://doi.org/10.1093/bioinformatics/btp033 (2009).
Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739, https://doi.org/10.1093/molbev/msr121 (2011).
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307–321, https://doi.org/10.1093/sysbio/syq010 (2010).
Galtier, N., Gouy, M. & Gautier, C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548 (1996).
Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–829, https://doi.org/10.1101/gr.074492.107 (2008).