Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates

Scientific Reports - Tập 8 Số 1
Prasit Palittapongarnpim1, Pravech Ajawatanawong1, Wasna Viratyosin2, Nat Smittipat2, Areeya Disratthakit3, Surakameth Mahasirimongkol3, Hideki Yanai4, Norio Yamada5, Supalert Nedsuwan6, Worarat Imasanguan6, Pacharee Kantipong6, Boonchai Chaiyasirinroje4, Jiraporn Wongyai4, Licht Toyo-oka7, Jody Phelan8, Julian Parkhill9, Taane G. Clark8, Martin L. Hibberd8, Wuthiwat Ruengchai1, Panawun Palittapongarnpim1, Tada Juthayothin2, Sissades Tongsima2, Katsushi Tokunaga7
1Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
2National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
3Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand
4TB-HIV Research Foundation, Chiangrai, Thailand
5Research Institute of Tuberculosis, JATA, Kiyose, Japan
6Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
7Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
8London School of Hygiene and Tropical Medicine, London, UK
9Welcome Trust Sanger Institute, Hinxton, Cambridge, UK

Tóm tắt

Abstract

Tuberculosis presents a global health challenge. Mycobacterium tuberculosis is divided into several lineages, each with a different geographical distribution. M. tuberculosis lineage 1 (L1) is common in the high-burden areas in East Africa and Southeast Asia. Although the founder effect contributes significantly to the phylogeographic profile, co-evolution between the host and M. tuberculosis may also play a role. Here, we reported the genomic analysis of 480 L1 isolates from patients in northern Thailand. The studied bacterial population was genetically diverse, allowing the identification of a total of 18 sublineages distributed into three major clades. The majority of isolates belonged to L1.1 followed by L1.2.1 and L1.2.2. Comparison of the single nucleotide variant (SNV) phylogenetic tree and the clades defined by spoligotyping revealed some monophyletic clades representing EAI2_MNL, EAI2_NTM and EAI6_BGD1 spoligotypes. Our work demonstrates that ambiguity in spoligotype assignment could be partially resolved if the entire DR region is investigated. Using the information to map L1 diversity across Southeast Asia highlighted differences in the dominant strain-types in each individual country, despite extensive interactions between populations over time. This finding supported the hypothesis that there is co-evolution between the bacteria and the host, and have implications for tuberculosis disease control.

Từ khóa


Tài liệu tham khảo

Global tuberculosis report 2017. (World Health Organization, 2017).

Coscolla, M. & Gagneux, S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26, 431–444, https://doi.org/10.1016/j.smim.2014.09.012 (2014).

Hershberg, R. Human host range of Mycobacterium tuberculosis. Nat Genet 48, 1453–1454, https://doi.org/10.1038/ng.3724 (2016).

Hirsh, A. E., Tsolaki, A. G., DeRiemer, K., Feldman, M. W. & Small, P. M. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101, 4871–4876, https://doi.org/10.1073/pnas.0305627101 (2004).

Gagneux, S. et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103, 2869–2873, https://doi.org/10.1073/pnas.0511240103 (2006).

Fenner, L. et al. HIV infection disrupts the sympatric host-pathogen relationship in human tuberculosis. PLoS Genet 9, e1003318, https://doi.org/10.1371/journal.pgen.1003318 (2013).

Stucki, D. et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 48, 1535–1543, https://doi.org/10.1038/ng.3704 (2016).

van Crevel, R. et al. Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis 200, 1671–1674, https://doi.org/10.1086/648477 (2009).

Toyo-Oka, L. et al. Strain-based HLA association analysis identified HLA-DRB1*09:01 associated with modern strain tuberculosis. HLA. https://doi.org/10.1111/tan.13070 (2017).

Omae, Y. et al. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet. https://doi.org/10.1038/jhg.2017.82 (2017).

Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264, 6–24, https://doi.org/10.1111/imr.12264 (2015).

Niemann, S., Merker, M., Kohl, T. A. & Supply, P. Impact of genetic diversity on the biology of Mycobacterium tuberculosis complex strains Microbiology Spectrum 4, TBTB2-0022-2016 (2016).

Tientcheu, L. D. et al. Immunological consequences of strain variation within the Mycobacterium tuberculosis complex. Eur J Immunol 47, 432–445, https://doi.org/10.1002/eji.201646562 (2017).

Tsolaki, A. G. et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci USA 101, 4865–4870, https://doi.org/10.1073/pnas.0305634101 (2004).

Mbugi, E. V. et al. Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS One 11, e0154571, https://doi.org/10.1371/journal.pone.0154571 (2016).

Ismail, F. et al. Study of Mycobacterium tuberculosis complex genotypic diversity in Malaysia reveals a predominance of ancestral East-African-Indian lineage with a Malaysia-specific signature. PLoS One 9, e114832, https://doi.org/10.1371/journal.pone.0114832 (2014).

Nguyen, V. A. et al. High prevalence of Beijing and EAI4-VNM genotypes among M. tuberculosis isolates in northern Vietnam: sampling effect, rural and urban disparities. PLoS One 7, e45553, https://doi.org/10.1371/journal.pone.0045553 (2012).

Click, E. S., Winston, C. A., Oeltmann, J. E., Moonan, P. K. & Mac Kenzie, W. R. Association between Mycobacterium tuberculosis lineage and time to sputum culture conversion. Int J Tuberc Lung Dis 17, 878–884, https://doi.org/10.5588/ijtld.12.0732 (2013).

Buu, T. N. et al. The Beijing genotype is associated with young age and multidrug-resistant tuberculosis in rural Vietnam. Int J Tuberc Lung Dis 13, 900–906 (2009).

Shanmugam, S., Selvakumar, N. & Narayanan, S. Drug resistance among different genotypes of Mycobacterium tuberculosis isolated from patients from Tiruvallur, South India. Infect Genet Evol 11, 980–986, https://doi.org/10.1016/j.meegid.2011.03.011 (2011).

Click, E. S., Moonan, P. K., Winston, C. A., Cowan, L. S. & Oeltmann, J. E. Relationship between Mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis 54, 211–219, https://doi.org/10.1093/cid/cir788 (2012).

Portevin, D., Gagneux, S., Comas, I. & Young, D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7, e1001307, https://doi.org/10.1371/journal.ppat.1001307 (2011).

Reiling, N. et al. Clade-specific virulence patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice. MBio 4, https://doi.org/10.1128/mBio.00250-13 (2013).

Uplekar, M. et al. WHO’s new end TB strategy. Lancet 385, 1799–1801, https://doi.org/10.1016/S0140-6736(15)60570-0 (2015).

Collins, C. H., Yates, M. D. & Grange, J. M. Subdivision of Mycobacterium tuberculosis into five variants for epidemiological purposes: methods and nomenclature. J Hyg (Lond) 89, 235–242 (1982).

Trial of BCG vaccines in south India for tuberculosis prevention: first report–Tuberculosis Prevention Trial. Bull World Health Organ 57, 819–827 (1979).

Coll, F. et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5, 4812, https://doi.org/10.1038/ncomms5812 (2014).

Vongpaisarnsin, K., Listman, J. B., Malison, R. T. & Gelernter, J. Ancestry informative markers for distinguishing between Thai populations based on genome-wide association datasets. Leg Med (Tokyo) 17, 245–250, https://doi.org/10.1016/j.legalmed.2015.02.004 (2015).

Brunelli, A. et al. Y chromosomal evidence on the origin of northern Thai people. PLoS One 12, e0181935, https://doi.org/10.1371/journal.pone.0181935 (2017).

Demay, C. et al. SITVITWEB–a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12, 755–766, https://doi.org/10.1016/j.meegid.2012.02.004 (2012).

Flores, L. et al. Large sequence polymorphisms classify Mycobacterium tuberculosis strains with ancestral spoligotyping patterns. J Clin Microbiol 45, 3393–3395, https://doi.org/10.1128/JCM.00828-07 (2007).

Palittapongarnpim, P. et al. Restriction fragment length polymorphism study of Mycobacterium tuberculosis in Thailand using IS6110 as probe. Int J Tuberc Lung Dis 1, 370–376 (1997).

Soares, P. A. et al. Resolving the ancestry of Austronesian-speaking populations. Hum Genet 135, 309–326, https://doi.org/10.1007/s00439-015-1620-z (2016).

Regueiro, M. et al. Austronesian genetic signature in East African Madagascar and Polynesia. J Hum Genet 53, 106–120, https://doi.org/10.1007/s10038-007-0224-4 (2008).

Aleksic, E. et al. First molecular epidemiology study of Mycobacterium tuberculosis in Kiribati. PLoS One 8, e55423, https://doi.org/10.1371/journal.pone.0055423 (2013).

Ballif, M. et al. Genetic diversity of Mycobacterium tuberculosis in Madang, Papua New Guinea. Int J Tuberc Lung Dis 16, 1100–1107, https://doi.org/10.5588/ijtld.11.0779 (2012).

Ley, S. D. et al. Diversity of Mycobacterium tuberculosis and drug resistance in different provinces of Papua New Guinea. BMC Microbiol 14, 307, https://doi.org/10.1186/s12866-014-0307-2 (2014).

Frink, S. et al. Rapid deletion-based subtyping system for the Manila family of Mycobacterium tuberculosis. J Clin Microbiol 49, 1951–1955, https://doi.org/10.1128/JCM.01338-10 (2011).

Ferdinand, S. et al. A study of spoligotyping-defined Mycobacterium tuberculosis clades in relation to the origin of peopling and the demographic history in Madagascar. Infect Genet Evol 5, 340–348, https://doi.org/10.1016/j.meegid.2004.10.002 (2005).

Miranda-Barros, F. et al. Y Chromosome STR haplotypes in different ethnic groups of Vietnam. Forensic Sci Int Genet 22, e18–e20, https://doi.org/10.1016/j.fsigen.2016.02.007 (2016).

Norhalifah, H. K., Syaza, F. H., Chambers, G. K. & Edinur, H. A. The genetic history of Peninsular Malaysia. Gene 586, 129–135, https://doi.org/10.1016/j.gene.2016.04.008 (2016).

Peng, M. S. et al. Tracing the Austronesian footprint in Mainland Southeast Asia: a perspective from mitochondrial DNA. Mol Biol Evol 27, 2417–2430, https://doi.org/10.1093/molbev/msq131 (2010).

Chen, Y. Y. et al. Molecular epidemiology of tuberculosis in Kaohsiung City located at southern Taiwan, 2000-2008. PLoS One 10, e0117061, https://doi.org/10.1371/journal.pone.0117061 (2015).

Buu, T. N. et al. Increased transmission of Mycobacterium tuberculosis Beijing genotype strains associated with resistance to streptomycin: a population-based study. PLoS One 7, e42323, https://doi.org/10.1371/journal.pone.0042323 (2012).

Coscolla, M. & Gagneux, S. Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7, e43–e59, https://doi.org/10.1016/j.ddmec.2010.09.004 (2010).

Haque, M. F. et al. Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains. Innate Immun 21, 746–758, https://doi.org/10.1177/1753425915594245 (2015).

Chen, Y. Y. et al. The pattern of cytokine production in vitro induced by ancient and modern Beijing Mycobacterium tuberculosis strains. PLoS One 9, e94296, https://doi.org/10.1371/journal.pone.0094296 (2014).

Narayanan, S. et al. Genomic interrogation of ancestral Mycobacterium tuberculosis from south India. Infect Genet Evol 8, 474–483, https://doi.org/10.1016/j.meegid.2007.09.007 (2008).

Mahasirimongkol, S. et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 10, 77–83, https://doi.org/10.1038/gene.2008.81 (2009).

Alcais, A., Abel, L. & Casanova, J. L. Human genetics of infectious diseases: between proof of principle and paradigm. J Clin Invest 119, 2506–2514, https://doi.org/10.1172/JCI38111 (2009).

Tsolaki, A. G. et al. Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 43, 3185–3191, https://doi.org/10.1128/JCM.43.7.3185-3191.2005 (2005).

Kamerbeek, J. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907–914 (1997).

Coll, F. et al. SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences. Bioinformatics 28, 2991–2993, https://doi.org/10.1093/bioinformatics/bts544 (2012).

Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191, https://doi.org/10.1093/bioinformatics/btp033 (2009).

Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739, https://doi.org/10.1093/molbev/msr121 (2011).

Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307–321, https://doi.org/10.1093/sysbio/syq010 (2010).

Galtier, N., Gouy, M. & Gautier, C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548 (1996).

Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–829, https://doi.org/10.1101/gr.074492.107 (2008).

Hawkey, J. et al. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 16, 667, https://doi.org/10.1186/s12864-015-1860-2 (2015).