Sự đa dạng virus ngày càng tăng liên quan đến kiến lửa nhập khẩu Solenopsis invicta (Formicidae: Hymenoptera)

Virology Journal - Tập 18 Số 1
César Augusto Diniz Xavier1, Margaret L. Allen2, Anna E. Whitfield1
1Department of Entomology and Plant Pathology, North Carolina State University, 840 Main Campus Drive, Raleigh, NC, 27606, USA
2U. S. Department of Agriculture, Agricultural Research Service, Biological Control of Pests Research Unit, 59 Lee Road, Stoneville MS 38776, USA

Tóm tắt

Tóm tắt Đặt bối cảnh

Các tiến bộ trong công nghệ giải trình tự và công cụ phân tích đã tạo điều kiện phát hiện nhiều virus mới từ động vật không xương sống, bao gồm cả kiến. Solenopsis invicta là một loài kiến xâm lấn đã nhanh chóng lan rộng toàn cầu, gây ra những tác động sinh thái và kinh tế đáng kể. Virome của nó đã bắt đầu được đặc trưng liên quan đến việc sử dụng tiềm năng của các virus như những kẻ thù tự nhiên. Mặc dù virome của S. invicta là được đặc trưng tốt nhất trong số các loài kiến, nhưng hầu hết các nghiên cứu đã được thực hiện trong khu vực bản địa của nó, với thông tin ít hơn từ các khu vực đã bị xâm lấn.

Phương pháp

Bằng cách sử dụng phương pháp metatranscriptome, chúng tôi đã xác định và đặc trưng hóa phân tử các chuỗi virus liên quan đến S. invicta, tại hai khu vực nhập khẩu, Mỹ và Đài Loan. Bộ dữ liệu được sử dụng ở đây được lấy từ các giai đoạn khác nhau (trứng, nhộng và trưởng thành) trong chu kỳ sống của S. invicta. Các chuỗi RNA công khai có sẵn từ Kho lưu trữ Đọc chuỗi GenBank đã được tải xuống và lắp ráp de novo bằng CLC Genomics Workbench 20.0.1. Các contigs đã được so sánh với các chuỗi protein không trùng lặp và những chuỗi có sự tương đồng với các chuỗi virus đã được phân tích thêm.

Từ khóa


Tài liệu tham khảo

Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol. 2018;63:31–45.

Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife. 2015;29(4):05378.

Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540(7634):539–43.

Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019;15(12).

Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in western Australia. J Virol. 2017;91(17):00680–717.

Atoni E, Zhao L, Karungu S, Obanda V, Agwanda B, Xia H, et al. The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007–2017). Rev Med Virol. 2019;29(6):13.

Faizah AN, Kobayashi D, Isawa H, Amoa-Bosompem M, Murota K, Higa Y, et al. Deciphering the virome of Culex vishnui subgroup mosquitoes, the major vectors of japanese encephalitis, in Japan. Viruses. 2020;12(3).

Pettersson JH, Shi M, Eden JS, Holmes EC, Hesson JC. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses. 2019;11(11).

Kleanthous E, Olendraite I, Lukhovitskaya NI, Firth AE. Discovery of three RNA viruses using ant transcriptomic datasets. Adv Virol. 2019;164(2):643–7 (Epub 2018/11/10).

Dhaygude K, Johansson H, Kulmuni J, Sundström L. Genome organization and molecular characterization of the three Formica exsecta viruses-FeV1, FeV2 and FeV4. PeerJ. 2019;20(6).

Valles SM, Rivers AR. Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range. Virus Genes. 2019;55(3):368–80.

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol. 2015;132:1–41.

Chen X, Gonçalves MA. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447–57.

Rode NO, Estoup A, Bourguet D, Courtier-Orgogozo V, Débarre F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv Genet. 2019;20(4):671–90.

Porter SD, Savignano DA. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology. 1990;71(6):2095–106.

Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 2005;52(3):273–88.

Callcott A-MA, Collins HL. Invasion and range expansion of imported fire ants (Hymenoptera: Formicidae) in North America from 1918–1995. The Florida Entomologist. 1996;79(2):240–51.

Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, et al. Global invasion history of the fire ant Solenopsis invicta. Science. 2011;331(6020):1066–8.

Shoemaker DD, Ahrens M, Sheill L, Mescher M, Keller L, Ross KG. Distribution and prevalence of Wolbachia Infections in native populations of the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Environ Entomol. 2003;32(6):1329–36.

Bouwma AM, Ahrens ME, DeHeer CJ, DeWayne SD. Distribution and prevalence of Wolbachia in introduced populations of the fire ant Solenopsis invicta. Insect Mol Biol. 2006;15(1):89–93.

Yang C-C, Yu Y-C, Valles SM, Oi DH, Chen Y-C, Shoemaker D, et al. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol Invasions. 2010;12(9):3307–18.

Porter SD, Fowler HG, Mackay WP. Fire ant mound densities in the United States and Brazil (Hymenoptera: Formicidae). J Econ Entomol. 1992;85(4):1154–61.

Morrison LW, Porter SD, Daniels E, Korzukhin MD. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions. 2004;6(2):183–91.

Drees BM, Calixto AA, Nester PR. Integrated pest management concepts for red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Insect Science. 2013;20(4):429–38.

Valles SM, Porter SD, Choi M-Y, Oi DH. Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar, and cricket bait formulations. J Invertebr Pathol. 2013;113(3):198–204.

Oi D, Valles S, Porter S, Cavanaugh C, White G, Henke J. Introduction of fire ant biological control agents into the Coachella Valley of California. Florida Entomologist. 2019;102(1):284–6, 3.

Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM, Oi DH, et al. A picorna-like virus from the red imported fire ant, Solenopsis invicta: initial discovery, genome sequence, and characterization. Virology. 2004;328(1):151–7.

Valles SM, Hashimoto Y. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant Solenopsis invicta. Virology. 2009;388(2):354–61.

Valles SM, Strong CA, Hashimoto Y. A new positive-strand RNA virus with unique genome characteristics from the red imported fire ant Solenopsis invicta. Virology. 2007;365(2):457–63.

Valles SM, Porter SD, Calcaterra LA. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina. PLoS One. 2018;13(2).

Allen ML. Near-complete genome sequences of new strain of Nylanderia Fulva Virus 1 from Solenopsis invicta. Microbiol Resour Announc. 2020;9(15):00798–819.

Valles SM, Shoemaker D, Wurm Y, Strong CA, Varone L, Becnel JJ, et al. Discovery and molecular characterization of an ambisense densovirus from South American populations of Solenopsis invicta. Biol Control. 2013;67(3):431–9.

Manfredini F, Shoemaker D, Grozinger CM. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta). Ecol Evol. 2015;6(1):233–44.

Hsu H-W, Chiu M-C, Shoemaker D, Yang C-CS. Viral infections in fire ants lead to reduced foraging activity and dietary changes. Sci. Rep. 2018;8(1):13498.

Valles SM. Positive-strand RNA viruses infecting the red imported fire ant, Solenopsis invicta. Psyche. 2012;2012:821591.

Allen ML, Rhoades JH, Sparks ME, Grodowitz MJ. Differential gene expression in red imported fire ant (Solenopsis invicta) (Hymenoptera: Formicidae) larval and pupal stages. Insects. 2018;9(4).

Morandin C, Tin MMY, Abril S, Gómez C, Pontieri L, Schiøtt M, et al. Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biol. 2016;17(1):43.

Fontana S, Chang N-C, Chang T, Lee C-C, Dang V-D, Wang J. The fire ant social supergene is characterized by extensive gene and transposable element copy number variation. Mol Ecol. 2020;29(1):105–20.

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. Epub 2012/02/22.

Bewick V, Cheek L, Ball J. Statistics review 10: further nonparametric methods. Critical Care (London, England). 2004;8(3):196–9 (Epub 2004/04/16).

De Mendiburu F, Yaseen M. Statistical procedures for agricultural research. R package version 140. https://myaseen208.github.io/agricolae/2020.

Di Giallonardo F, Schlub TE, Shi M, Holmes EC. Dinucleotide composition in animal RNA viruses is shaped more by virus family than by host species. J Virol. 2017;91(8):e02381-e2416.

Kapoor A, Simmonds P, Lipkin WI, Zaidi S, Delwart E. Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol. 2010;84(19):10322–8.

Elek A, Kuzman M, Vlahovicek K. coRdon: codon usage analysis and prediction of gene expressivity. R package version 170. https://github.com/BioinfoHR/coRdon2020.

Charif D, Lobry JR. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural Approaches to Sequence Evolution: Molecules, Networks, Populations. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 207–32.

Kassambara A, Mundt F. factoextra: extract and visualize the results of multivariate data analyses. R package version 107. http://www.sthda.com/english/rpkgs/factoextra2020.

Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N, Rossi SL, et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol. 2013;87(5):2475–88 (Epub 2012/12/19).

Toriyama S, Kimishima T, Takahashi M, Shimizu T, Minaka N, Akutsu K. The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. J Gen Virol. 1998;79(8):2051–8.

Valles SM, Oi DH, Becnel JJ, Wetterer JK, LaPolla JS, Firth AE. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva. Virology. 2016;496:244–54 (Epub 2016/06/30).

Williams SH, Levy A, Yates RA, Somaweera N, Neville PJ, Nicholson J, et al. The diversity and distribution of viruses associated with Culex annulirostris mosquitoes from the Kimberley region of western Australia. Viruses. 2020;12(7):717.

Valles SM, Strong CA, Hunter WB, Dang PM, Pereira RM, Oi DH, et al. Expressed sequence tags from the red imported fire ant, Solenopsis invicta: annotation and utilization for discovery of viruses. J Invertebr Pathol. 2008;99(1):74–81.

Falk BW, Tsai JH. Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol. 1998;36:139–63.

Liu W, Hajano JU, Wang X. New insights on the transmission mechanism of tenuiviruses by their vector insects. Curr Opin Virol. 2018;33:13–7.

Nault LR, Gordon DT. Multiplication of Maize Stripe Virus in Peregrinus maidis. Phytopathology. 1988;78(7):991–5.

Sicard A, Yvon M, Timchenko T, Gronenborn B, Michalakis Y, Gutierrez S, et al. Gene copy number is differentially regulated in a multipartite virus. Nat Commun. 2013;4(2248).

Wu B, Zwart MP, Sánchez-Navarro JA, Elena SF. Within-host evolution of segments ratio for the tripartite genome of Alfalfa mosaic virus. Sci Rep. 2017;7(1):5004.

Zwart MP, Elena SF. Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environments. Virus Evol. 2020;6(1).

Zhang C, Pei X, Wang Z, Jia S, Guo S, Zhang Y, et al. The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology. 2012;425(2):113–21.