Evaluation of the genotoxicity of PM2.5 collected by a high-volume air sampler with impactor

Genes and Environment - Tập 41 - Trang 1-11 - 2019
Kazutoshi Sugita1, Yuka Kin1, Mayuko Yagishita2, Fumikazu Ikemori3, Kimiyo Kumagai4, Toshihiko Ohara5, Makoto Kinoshita6, Kazuyuki Nishimura2, Yukihiko Takagi1, Daisuke Nakajima7
1Azabu University,Sagamihara, Japan
2Prefectural University of Hiroshima, Syoubara, Japan
3Nagoya City Institute for Environmental Sciences, Nagoya, Japan
4Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Japan
5Health environment center, Hiroshima Prefectural Technology Research Institute, Hiroshima, Japan
6Fukuoka City Institute for Hygiene and the Environment, Fukuoka city, Japan
7National Institute for Environmental Studies, Ibaraki, Japan

Tóm tắt

The harmful effects of fine particles with an aerodynamic diameter less than 2.5 μm (PM2.5) on respiratory organs are emphasized in pollution studies because PM2.5 have high deposition rates in the respiratory organs and contain various hazardous compounds. In this study, a sampling method combining a high-volume air sampler (HV) with a PM2.5 impactor was developed for collecting large quantities of PM2.5. The concentrations of elemental carbon (EC), organic carbon (OC), inorganic ions, and polycyclic aromatic hydrocarbons (PAHs) were measured in PM2.5 collected by the high-and low-volume air samplers (LV). Similar results were obtained from the HV and LV methods, with respect to inorganic carbon, organic carbon, sodium ions, ammonium ions, and PAHs with more than four rings. Because of the much larger amount of PM2.5 could be collected by the HV method, the trace constituents, that were difficult to detect by the conventional LV method, were readily detected by the HV method. Furthermore, when the microsuspension method that was modified more sensitive Ames mutagenicity test, was used to test the PM2.5 samples at four sites, mutagenic activities were detected by strains TA100 and TA98. Most of the mutagenic activity was associated with the PM2.5 fraction and mutagenic activity in winter was greater than that in summer. The HV method produced results similar to those from the conventional LV method with respect to the PM2.5 components present in the atmosphere in relatively high concentrations, but its 40-fold greater flow rate enabled the detection of mutagenic compounds present in only trace concentrations.

Tài liệu tham khảo

Błaszczyk E, Rogula-Kozłowska W, Klejnowski K, Fulara I, Mielzynska-Svach D. Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens, Poland. Air Qual Atmos Health. 2017;10:389–400. Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T. Comparison of Improve and Niosh carbon measurements. Aerosol Sci Technol. 2001;34:23–34. Claudia RR, Sergio MC, Jose LM, Claudia AFA, Israel F. Genotoxicity of Polycyclic Aromatic Hydrocarbons and Nitro-Derived in Respirable Airborne Particulate Matter Collected from Urban Areas of Rio de Janeiro (Brazil). BioMed Res Int. 2013;2013:765352. Dockery DW, Pope CA, Xu XP, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. An association between air-pollution and mortality in 6 United-States cities. N Engl J Med. 1993;329:1753–9. Endo, O., Goto, S., Matsumoto, Y., Sakai, S., Akutagawa, T., Asanoma, M., Hirayama, T., Watanabe, T., Tsukatani, H., Sera, N., Tada, A. and Wakabayashi, K.: Mutagenicity of airborne particles, river waters and soils in Japan from 1996 to 2003. Environ Mutagen Res, Vol.26, pp9–22 (2004). Endo, O., Sugita, K., Goto, S., Amagai, T. and Matsushita H.: Mutagenicity of size-fractionated airborne particles collected with Andersen low pressure impactor, L Health Sci Vol.49, No.1, pp22–27 (2003). Ezoe, Y., Goto, S., Tanabe, K., Endo, O., Koyano, M., Watanabe, I. and Matsushita, H.: Polycyclic aromatic hydrocarbon concentrations of airborne particles in urban air over the past twenty years. Polycyclic Aromatic Comounds, Vol.24, pp635–646 (2004). Fu J, Jiang D, Lin G, Liu K, Wang Q. An ecological analysis of PM2.5 concentrations and lung cancer mortality rates in China. BMJ Open. 2017;5:e009452. Fujikawa, K., Shigekazu, Y., Shiro, T., Hisao, C., Okihiro, O. and Shinji I.: The behavior of carbon compounds (EC,OC) in aerosols, and its relationships with other compounds. - analysis of daily data. Annual Reports of Fukuoka Institute of Health and Environmental Sciences, Vol.35, pp93–97 (2008). Gabbani G, Nardini B, Bordin A, Pavanello S, Janni L, Celotti L, Clonfero E. Urinary mutagenicity on TA98 and YG1024 Salmonella typhimurium strains after a hamburger meal: influence of GSTM1 and NAT2 genotypes. Mutagenesis. 1998;13(2):187–91. Hashimoto, T.: Investigation of PM2.5 measurements in the environmental atmosphere of Kagawa prefecture (II). Annual Report of Kagawa Prefectural Research Institute for Environmental Sciences and Public Health, Vol.12, pp45–55 (2013). Hoshino, T., Kumagai, K., Yamaguchi, N. and Saito, Y.: Investigation of fine particulate pollution in atmosphere in Gunma. Annual Reports of Gunma Prefectural Institute of Public Health and Environmental Sciences, Vol.43, pp47–51 (2011). IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, vol. 92; 2010. Ichikawa Y, Watanabe T, Horimoto Y, Ishii K, Naito S. Measurements of 50 non-polar organic compounds including polycyclic aromatic hydrocarbons, n-alkanes and phthalate esters in fine particulate matter (PM2.5) in an industrial area of Chiba prefecture, Japan. Asian J Atmos Environ. 2018;12(3):274–88. Kado NY, Guirguis GN, Flessel CP, Chan RC, Chang KI, Wesolowski JJ. Mutagenicity of fine (less than 2.5 microns) airborne particles: diurnal variation in community air determined by a Salmonella micro preincubation (microsuspension) procedure. Environ Mutagen. 1986;8(1):53–66. Kado, N.Y., Langlay, D. and Eisenstadt, E.: A simple modifyion of the Salmonella liquid-incubation assay. Increased sensitivety for detecting mutagens in human urine. MutatRes, Vol.121, No.1, pp25–32 (1983). Li W, Wang C, Wang H, Che J, Shen H, Shen G, Huang Y, Wang R, Wang B, Zhang Y, Chen H, Chen Y, Su S, Lin N, Tang J, Li Q, Wang X, Liu J, Tao S. Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China. Environ Pollut. 2014;192:83–90. Matsumoto, O., Ando, M., Tamura, K.,: Differences of mutagenic activity od Airborn particulates by particle size –assay by the Salmonella Mirosuspention procedure-. Jpn J Toxicol Environ Healty Vol.39, No.2, pp139–147 (1993). Minnesota department of Health: Guidance for Evaluating the Cancer Potency of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures in Environmental Samples. (2016). Miyoshi T, Akiyama K, Ueno H, Yokota H, Kouichiro Ishi K, Ishi M, Ito Y, Higuchi Y. Research on PM2.5 in the atmosphere. Annual Reports of Tokyo Metropolitan Research Institute for Environmental Protection; 2009. p. 110–3. Nagai A, Kano Y, Funasaka R, Nakamuro K. Mutagenic characteristics and contribution of polycyclic aromatic hydrocarbons to mutagenicity of concentrates from Municipal River water by blue chitin column. J Health Sci. 2002;48(3):232–41. Nozaki, K., Kushida, M., Motoki, S. and Suzuki, K.: Study on the polycyclic aromatic hydrocarbon compounds present in particulate matters in the atmosphere. Annual Report of Kagawa Prefectural Research Institute for Environmental Sciences and Public Health, Vol.6, pp45–51 (2007). OECD: OECD guideline for testing of chemicals Test No. 471: Bacterial reverse mutation test (1997). Oura, Y., Sugawara, S., and Ebihara, M.: Determination of elemental and organic carbon in atmospheric suspended particulate matters using photon activation analysis. Research Report of Laboratory of Nuclear Science, Vol.41, pp71–76 (2008). Peters, T.M., Vanderpool, R.W., and Wiener, R.W.: Design and calibration of the EPA PM2.5 well impactor Ninety-Six (WINS). Aerosol Sci Technol, Vol.34, pp389–397 (2001). Sameton JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 us cities, 1987-1994. N Engl J Med. 2000;343:1742–9. Schwartz J. Air pollution and hospital admissions for respiratory disease. Epidemiology. 1996;7:20–8. Sugita, K., Goto, S., Endo, O., Nakajima, D., Yajima, H. and Ishii, T.: Particle size effects on the deposition ratios of airborne particles in the respiratory tract. J Health Sci, Vol.50, No.2, pp185–188 (2004). Sugiyama H, Saito T. Seasonal Variation and Size Distribution of Polycyclic Aromatic Hydrocarbons in Ambient Air. Bulletin of Kanagawa Environmental Research Center. 2004;27:70–6. Suzuki, Y., Kenji Goto, K. And Misawa, T.: Chemical characteristic analysis of PM2.5 in the ambient air on Kawasaki City (2012). Annual Report of Kawasaki Environmental Research Institute, Vol.1, pp31–36 (2013). Takagi Y, Goto S, Nakajima D, Endo O, Koyano M, Kohzaki K, Matsushita H. Mutagenicity of suspended particulate matter divided in three sizes lndoors. J Health Sci. 2002;48(6):480–4. Takagi Y, Sugita K, Muto M, Kato Y, Kohzaki K, Endo O, Goto S. Measurement of Polynuclea aromatic hydrocarbons in Canaine lung after alkaline decomposition. J Vet Med Sci. 2004;66(7):793–6. Tamagawa K, Aihara Y, Takahashi Y, Seki T. Seasonal Variations of Mutagenic Activities of Airborne Particulates –Influence of Asphalt Dust Produced by Studded Tires of Automobiles. J Japan Soc Air Pollt. 1988;23(3):143–50. Uchiyama, S.: Seasonal variation in size distributions for major ionic species in the atmospheric aerosol. J Japan Soc Air Pollut Vol.25, No.1, pp77–84 (1990). United States Environmental Protection Agency. Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures. Washington D.C; 2011. Watanabe T, Hasei T, Kokunai O, Coulibaly S, Nishimura S, Fukasawa M, Takahashi R, Mori Y, Fujita K, Yoshihara Y, Miyake Y, Kishi A, Matsui M, Ikemori F, Funasaka K, Toriba A, Hayakawa K, Arashidani K, Inaba Y, Sera N, Deguchi Y, Seiyama T, Yamaguchi T, Watanabe M, Honda N, Wakabayashi K, Totsuka Y. Air Pollution with Particulate Matter and Mutagens: Relevance of Asian Dust to Mutagenicity of Airborne Particles in Japan. Genes and Environ. 2014;36(3):120–36. WHO: International Programme on Chemical Safety Environmental Health Criteria 202 Selected Non Heterocyclic Polycyclic Aromatic Hydrocarbons. (1988) WHO: WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. (2005). Yamada, E,, Matoba, D., and Fuse, Y.: Analysis of polycyclic aromatic hydrocarbons contained in atmospheric particulates in Kyoto. Bunseki Kagaku, Vol.62, pp275–283 (2013). Zhang YL, Cao F. Fine particulate matter (PM2.5) in China at a city level. Scientific Reports. 2015;5:14884.