Evaluation of the deformation shape of a balloon-type dielectric elastomer actuator prestretched with water pressure

Springer Science and Business Media LLC - Tập 8 - Trang 1-10 - 2021
Natsumi Koike1, Takeshi Hayakawa1
1Depertment of Precision Engineering, Chuo University, Tokyo, Japan

Tóm tắt

In this study, we evaluated the deformation shape of a balloon-type dielectric elastomer actuator (DEA) that has been prestretched with water pressure. We fabricated the DEA with poly(dimethylsiloxane) (PDMS) as the elastomeric material and carbon grease as the electrode. We derived analytical solutions for the deformation of the DEA based on structural mechanical models. Additionally, we compared the deformation shapes obtained by theoretical analysis and experimental results. Our model can partially predict the deformation shape of the DEA with good accuracy. In addition, we discuss the applicable range of the theoretical model and error relative to the experimental results.

Tài liệu tham khảo

Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451–455 Coyle S, Majidi C, LeDuc P, Hsia KJ (2018) Bio-inspired soft robotics: material selection, actuation, and design. Extreme Mech Lett 22:51–59 Vanderborght B, Van Ham R, Verrelst B, Van Damme M, Lefeber D (2008) Overview of the lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles. Adv Robot 22(10):1027–1051 Gerboni G, Diodato A, Ciuti G, Cianchetti M, Menciassi A (2017) Feedback control of soft robot actuators via commercial flex bend sensors. IEEE/ASME Trans Mechatron 22(4):1881–1888 Caldwell DG, Medrano-Cerda GA, Goodwin M (1995) Control of pneumatic muscle actuators. IEEE Control Syst Mag 15(1):40–48 Li C, Xie Y, Li G, Yang X, Jin Y, Li T (2015) Electromechanical behavior of fiber-reinforced dielectric elastomer membrane. Int J Smart Nano Mater 6(2):124–134 Li Y, Hashimoto M (2015) Pvc gel based artificial muscles: characterizations and actuation modular constructions. Sens Actuators A Phys 233:246–258 Kim B, Lee MG, Lee YP, Kim Y, Lee G (2006) An earthworm-like micro robot using shape memory alloy actuator. Sens Actuators A Phys 125(2):429–437 Lee S-G, Park H-C, Pandita SD, Yoo Y (2006) Performance improvement of ipmc (ionic polymer metal composites) for a flapping actuator. Int J Control Autom Syst 4(6):748–755 Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ (2015) Voxelated liquid crystal elastomers. Science 347(6225):982–984 Yang Y, Pei Z, Li Z, Wei Y, Ji Y (2016) Making and remaking dynamic 3d structures by shining light on flat liquid crystalline vitrimer films without a mold. J Am Chem Soc 138(7):2118–2121 Iamsaard S, Aßhoff SJ, Matt B, Kudernac T, Cornelissen JJ, Fletcher SP, Katsonis N (2014) Conversion of light into macroscopic helical motion. Nat Chem 6(3):229–235 Palagi S, Mark AG, Reigh SY, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N (2016) Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater 15(6):647–653 Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q, Chiba S (2000) High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng C 11(2):89–100 Chiang Foo C, Cai S, Jin AdrianKoh S, Bauer S, Suo Z (2012) Model of dissipative dielectric elastomers. J Appl Phys 111(3):034102 Xu L, Chen H-Q, Zou J, Dong W-T, Gu G-Y, Zhu L-M, Zhu X-Y (2017) Bio-inspired annelid robot: a dielectric elastomer actuated soft robot. Bioinspir Biomim 12(2):025003 Cao J, Liang W, Zhu J, Ren Q (2018) Control of a muscle-like soft actuator via a bioinspired approach. Bioinspir Biomim 13(6):066005 Acome E, Mitchell S, Morrissey T, Emmett M, Benjamin C, King M, Radakovitz M, Keplinger C (2018) Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359(6371):61–65 Gupta U, Wang Y, Ren H, Zhu J (2018) Dynamic modeling and feedforward control of jaw movements driven by viscoelastic artificial muscles. IEEE/ASME Trans Mechatron 24(1):25–35 Li T, Li G, Liang Y, Cheng T, Dai J, Yang X, Liu B, Zeng Z, Huang Z, Luo Y (2017) Fast-moving soft electronic fish. Sci Adv 3(4):1602045 Li T, Zou Z, Mao G, Yang X, Liang Y, Li C, Qu S, Suo Z, Yang W (2019) Agile and resilient insect-scale robot. Soft Robot 6(1):133–141 Cao C, Burgess S, Conn AT (2019) Toward a dielectric elastomer resonator driven flapping wing micro air vehicle. Front Robot AI 5:137 Mao G, Huang X, Diab M, Li T, Qu S, Yang W (2015) Nucleation and propagation of voltage-driven wrinkles in an inflated dielectric elastomer balloon. Soft Matter 11(33):6569–6575 Li Z, Zhu J, Foo CC, Yap CH (2017) A robust dual-membrane dielectric elastomer actuator for large volume fluid pumping via snap-through. Appl Phys Lett 111(21):212901 Hosoya N, Masuda H, Maeda S (2019) Balloon dielectric elastomer actuator speaker. Appl Acoust 148:238–245 Ho S, Banerjee H, Foo YY, Godaba H, Aye WMM, Zhu J, Yap CH (2017) Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials. J Intell Mater Syst Struct 28(20):3054–3065 Mun S, Yun S, Nam S, Park SK, Park S, Park BJ, Lim JM, Kyung K-U (2018) Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans Haptics 11(1):15–21 Zhu J, Cai S, Suo Z (2010) Nonlinear oscillation of a dielectric elastomer balloon. Polym Int 59(3):378–383 Zhu J, Cai S, Suo Z (2010) Resonant behavior of a membrane of a dielectric elastomer. Int J Solids Struct 47(24):3254–3262 Keplinger C, Li T, Baumgartner R, Suo Z, Bauer S (2012) Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8(2):285–288 Ahmadi S, Gooyers M, Soleimani M, Menon C (2013) Fabrication and electromechanical examination of a spherical dielectric elastomer actuator. Smart Mater Struct 22(11):115004 Pourazadi S, Ahmadi S, Menon C (2015) On the design of a dea-based device to pot entially assist lower leg disorders: an analytical and fem investigation accounting for nonlinearities of the leg and device deformations. Biomed Eng Online 14(1):1–18 Molberg M, Leterrier Y, Plummer CJ, Walder C, Löwe C, Opris DM, Nüesch FA, Bauer S, Månson J-AE (2009) Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications. J Appl Phys 106(5):054112 Kim HT, Jeong OC (2012) Measurement of nonlinear mechanical properties of surfactant-added poly (dimethylsiloxane). Jpn J Appl Phys 51(6S):06–07 Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9(7):671–675 Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imagej. Biophoton Int 11(7):36–42 Godaba H, Foo CC, Zhang ZQ, Khoo BC, Zhu J (2014) Giant voltage-induced deformation of a dielectric elastomer under a constant pressure. Appl Phys Lett 105(11):112901 Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, NewYork Mao G, Huang X, Liu J, Li T, Qu S, Yang W (2015) Dielectric elastomer peristaltic pump module with finite deformation. Smart Mater Struct 24(7):075026