Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain)

Hydrology and Earth System Sciences - Tập 13 Số 7 - Trang 1337-1347
Johannes van der Kwast1,2, W. Timmermans3, A.S.M. Gieske3, Zhongbo Su3, Albert Olioso4, Jia Li5, J.A. Elbers5, Derek Karssenberg1, S.M. de Jong1
1Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
2now at: Flemish Institute for Technological Research (VITO), Mol, Belgium
3International Inst. for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands
4Institut National de la Recherche Agronomique (INRA) Avignon, France
5Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands

Tóm tắt

Abstract. Accurate quantification of the amount and spatial variation of evapotranspiration is important in a wide range of disciplines. Remote sensing based surface energy balance models have been developed to estimate turbulent surface energy fluxes at different scales. The objective of this study is to evaluate the Surface Energy Balance System (SEBS) model on a landscape scale, using tower-based flux measurements at different land cover units during an overpass of the ASTER sensor over the SPARC 2004 experimental site in Barrax (Spain). A sensitivity analysis has been performed in order to investigate to which variable the sensible heat flux is most sensitive. Taking into account their estimation errors, the aerodynamic parameters (hc, z0M and d0) can cause large deviations in the modelling of sensible heat flux. The effect of replacement of empirical derivation of these aerodynamic parameters in the model by field estimates or literature values is investigated by testing two scenarios: the Empirical Scenario in which empirical equations are used to derive aerodynamic parameters and the Field Scenario in which values from field measurements or literature are used to replace the empirical calculations of the Empirical Scenario. In the case of a homogeneous land cover in the footprints of the measurements, the Field Scenario only resulted in a small improvement, compared to the Empirical Scenario. The Field Scenario can even worsen the result in the case of heterogeneous footprints, by creating sharp borders related to the land cover map. In both scenarios modelled fluxes correspond better with flux measurements over uniform land cover compared to cases where different land covers are mixed in the measurement footprint. Furthermore SEBS underestimates sensible heat flux especially over dry and sparsely vegetated areas, which is common in single-source models.

Từ khóa


Tài liệu tham khảo

Anderson, M C., Kustas, W P., and Norman, J M.: Upscaling and downscaling – A regional view of the Soil-Plant-Atmsophere continuum, Agron. J., 95, 1408–1423, 2003.

Avissar, R. and Pielke, R A.: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology, Mon. Weather Rev., 117, 2113–2136, 1989.

Bastiaanssen, W. G M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J F., Roering, G J., and van~der Wal, T.: A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation, J. Hydrol., 212–213, 213–229, \\doi10.1016/S0022-1694(98)00254-6, 1998.

Berk, A., Bernstein, L S., and Robertson, D C.: MODTRAN: A Moderate Resolution Model for LOWTRAN 7, Air Force Geophysics Laboratory Technical Report GL-TR-89-0122, Hanscom AFB, MA, 1989.

Brutsaert, W.: Evaporation into the atmosphere, Reidel, Dordrecht, The Netherlands, 299 pp., 1982.

Carlson, T N. and Ripley, D A.: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. Environ., 62, 241–252, 1997.

French, A N., Schmugge, T., Kustas, W P., Brubaker, K., and Prueger, J.: Surface energy fluxes over El Reno, Oklahoma, using high-resolution remotely sensed data, Water Resour. Res., 39, 1164–1176, 2003.

French, A N., Jacob, F., Anderson, M., Kustas, W P., Timmermans, W., Gieske, A., Su, Z., Su, H., McCabe, M., Li, F., Prueger, J., and Brunsell, N.: Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Rem. Sens. Environ., 99, 55–65, \\doi10.1016/j.rse.2005.05.015, 2005.

Friedl, M A.: Forward and inverse modeling of land surface energy balance using surface temperature measurements, Remote Sens. Environ., 79, 344–354, \\doi10.1016/S0034-4257(01)00284-X, 2002.

Gillespie, A., Rokugawa, S., Hook, S., Matsunaga, T., and Kahle, A.: Temperature/Emissivity Separation Algorithm Theoretical Basis Document, Version~2.4, http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-03.pdf, 1999.

Hasager, C. and Jensen, N.: Surface flux aggregation in heterogeneous terrain, Q. J. Roy. Meteor. Soc., 125, 2075–2102, 1999.

Horst, T W. and Weil, J C.: Footprint estimation for scalar flux measurements in the atmospheric surface layer, Bound-Lay. Meteorol., 59, 279–296, \\doi10.1007/BF00119817, 1992.

Hsieh, C.-I., Katul, G., and Chi, T.: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows, Adv. Water Resour., 23, 765–772, \\doi10.1016/S0309-1708(99)00042-1, 2000.

Huntingford, C., Verhoef, A., and Stewart, J.: Dual versus single source models for estimating surface temperature of African savannah, Hydrol. Earth Syst. Sci., 4, 185–191, 2000.

Jasinski, M. and Crago, R.: Estimation of vegetation aerodynamic roughness of natural regions using frontal area density determined from satellite imagery, Agr. For. Meteorol., 94, 65–77, \\doi10.1016/S0168-1923(98)00129-4, 1999.

Karssenberg, D., de~Jong, K., and van~der Kwast, J.: Modelling landscape dynamics with Python, Int. J. Geogr. Inf. Sci., 21, 483–495, \\doi10.1080/13658810601063936, 2007.

Kustas, W P., Humes, K S., Norman, J M., and Moran, M.: Single- and dual-source modeling of surface energy fluxes with radiometric surface temperature, J. Appl. Meteorol., 35, 110–121, \\doi10.1175/1520-0450(1996)035, 1996.

Kustas, W P., Norman, J M., Anderson, M., and French, A N.: Estimating subpixel surface temperatures and energy fluxes from the vegetation index – radiometric temperature relationship, Remote Sens. Environ., 85, 429–440, \\doi10.1016/S0034-4257(03)00036-1, 2003.

Liang, S.: Narrowband to broadband conversions of land surface albedo I: Algorithms, Remote Sens. Environ., 76, 213–238, \\doi10.1016/S0034-4257(00)00205-4, 2001.

Meijninger, W.: Surface fluxes over natural landscapes using scintillometry, PhD thesis, Wageningen University, http://library.wur.nl/wda/dissertations/dis3442.pdf, 176 pp., 2003.

Moran, M S.: Thermal infrared measurements as an indicator of plant ecosystem health, in: Thermal remote sensing in land surface processes, edited by: Quattrochi, D A., and Luvall, J., Taylor and Francis, CRC Press, Boca Raton, USA, 257–282, 2004.

Norman, J M., Kustas, W P., and Humes, K S.: A two-Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. For. Meteorol., 77, 263–293, \\doi10.1016/0168-1923(95)02265-Y, 1995.

Schmid, H.: Footprint modeling for vegetation atmosphere exchange studies: a review and perspective, Agr. For. Meteorol., 113, 159–183, \\doi10.1016/S0168-1923(02)00107-7, 2002.

Schuepp, P., Leclerc, M., Macpherson, J., and Desjardins, R.: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation, Bound-Lay. Meteorol., 50, 355–373, \\doi10.1007/BF00120530, 1990.

Stull, R.: An introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.

Sobrino, J A., Jimenez-Munoz, J C., Balick, L., Gillespie, A R., Sabol, D A., and Gustafson, W T.: Accuracy of ASTER level-2 thermal-infrared standard products of an agricultural area in Spain, Rem. Sens. Environ., 106, 146–153.

Su, Z.: A Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes from point to continental scale, Publications of the National Remote Sensing Board (BCRS), USP-2, 2001.

Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, 2002.

Su, Z., Schmugge, T., Kustas, W., and Massman, W.: An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere, J. Appl. Meteorol., 40, 1933–1951, \\doi10.1175/1520-0450(2001)0402.0.CO;2, 2001.

Su, Z., Timmermans, W., Gieske, A., Jia, L., Elbers, J A., Olioso, A., Timmermans, J., Van Der~Velde, R., Jin, X., Van Der~Kwast, H., Nerry, F., Sabol, D., Sobrino, J A., Moreno, J., and Bianchi, R.: Quantification of land-atmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site, Int. J. Remote Sens., 29, 5215–5235, \\doi10.1080/01431160802326099, 2008.

Tasumi, M., Allen, R., Bastiaanssen, W. G M., Morse, A., Tasumi, M., Allen, R., and Kramber, W.: The theoretical basis of SEBAL, Raytheon Systems Company, Earth Observation System Data and Information System Project, Idaho Department of Water Resources and University of Idaho, 2000.

Timmermans, W., Kustas, W P., Anderson, M., and French, A N.: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Rem. Sens. Environ., 108, 369–384, \\doi10.1016/j.rse.2006.11.028, 2005a.

Timmermans, W J., Su, Z., and Olioso, A.: Footprint issues in scintillometry over heterogeneous landscapes, Hydrol. Earth Syst. Sci. Discuss., 6, 2099-2127, 2009.

Timmermans, W J., van~der Kwast, J., Gieske, A S., Su, Z., Olioso, A., Jia, L., and Elbers, J.: Intercomparison of energy flux models using ASTER imagery at the SPARC 2004 site (Barrax, Spain), in: ESA Proceedings WPP-250, SPARC Final Workshop, ITC Enschede, The Netherlands, 4–5 July 2005b.

Wang, T., Ochs, G., and Clifford, S.: A saturation-resistant optical scintillometer to measure C$_n^2$, J. Opt. Soc. Am, 69, 334–338, 1978.