Evaluation of the SBAS InSAR Service of the European Space Agency’s Geohazard Exploitation Platform (GEP)

Remote Sensing - Tập 9 Số 12 - Trang 1291
Jorge Pedro Galvé1, José Vicente Perez‐Peña1,2, José Miguel Azañón3, Damien Closson4, Fabiana Calò5, Cristina Reyes‐Carmona1, A. Jabaloy1, Patricia Ruano3, Rosa María Mateos6, Davide Notti7, Gerardo Herrera6, Marta Béjar‐Pizarro6, Oriol Monserrat8, Philippe Bally9
1Departamento de Geodinámica, Universidad de Granada, Avda. del Hospicio, s/n, 18010 Granada, Spain
2Instituto Andaluz de Geofísica (IAG), Universidad de Granada, Calle Profesor Clavera, 12, 18071 Granada, Spain
3Instituto Andaluz de Ciencias de la Tierra (IACT), CISC-UGR, Av. de las Palmeras, 4, 18100 Armilla, Spain
4GIM n.v., Philipssite 5 Bus 27, 3001 Leuven, Belgium
5Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche Via Diocleziano 328, 80124 Napoli, Italy
6Geohazards InSAR Laboratory and Modeling Group (InSARlab), Geoscience Research Department, Geological Survey of Spain (IGME), Alenza 1, 28003 Madrid, Spain
7National Research Council of Italy, Research Institute for Geo-Hydrological Protection (CNR-IRPI), Strada delle Cacce 73, 10135 Torino, Italy
8Centre Tecnològic y Telecomunicacions de Catalunya, Parc Mediterrani de la Tecnologia, Avinguda Carl Friedrich Gauss, 7, 08860 Castelldefels, Spain
9European Space Agency, Science, Applications and Future Technologies Department, Directorate of Earth Observation Programmes, ESRIN, Via Galileo Galilei snc, I-00044 Frascati, Italy

Tóm tắt

The analysis of remote sensing data to assess geohazards is being improved by web-based platforms and collaborative projects, such as the Geohazard Exploitation Platform (GEP) of the European Space Agency (ESA). This paper presents the evaluation of a surface velocity map that is generated by this platform. The map was produced through an unsupervised Multi-temporal InSAR (MTI) analysis applying the Parallel-SBAS (P-SBAS) algorithm to 25 ENVISAT satellite images from the South of Spain that were acquired between 2003 and 2008. This analysis was carried out using a service implemented in the GEP called “SBAS InSAR”. Thanks to the map that was generated by the SBAS InSAR service, we identified processes not documented so far; provided new monitoring data in places affected by known ground instabilities; defined the area affected by these instabilities; and, studied a case where GEP could have been able to help in the forecast of a slope movement reactivation. This amply demonstrates the reliability and usefulness of the GEP, and shows how web-based platforms may enhance the capacity to identify, monitor, and assess hazards that are associated to geological processes.

Từ khóa


Tài liệu tham khảo

Lash, 2016, Aerial archaeologist, Nature, 534, 427, 10.1038/nj7607-427a

Manunta, M., Bonano, M., Buonanno, S., Casu, F., De Luca, C., Fusco, A., Lanari, R., Manzo, M., Ojha, C., and Pepe, A. (2016, January 10–15). Unsupervised parallel SBAS-DInSAR chain for massive and systematic Sentinel-1 data processing. Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China.

Massonnet, 1993, The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138, 10.1038/364138a0

Romero, 2014, Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain, Environ. Earth Sci., 71, 163, 10.1007/s12665-013-2422-z

Przylucka, 2015, Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland), Remote Sens., 7, 5300, 10.3390/rs70505300

Galve, 2015, Assessing sinkhole activity in the Ebro Valley mantled evaporite karst using advanced DInSAR, Geomorphology, 229, 30, 10.1016/j.geomorph.2014.07.035

Galve, 2015, Railway deformation detected by DInSAR over active sinkholes in the Ebro Valley evaporite karst, Spain, Nat. Hazards Earth Syst. Sci., 15, 2439, 10.5194/nhess-15-2439-2015

Caló, F., Notti, D., Galve, J.P., Abdikan, S., Görüm, T., Pepe, A., and Şanli, F.B. (2017). DInSAR-based detection of land subsidence and correlation with groundwater depletion in konya plain, Turkey. Remote Sens., 9.

Herrera, 2013, Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees), Remote Sens. Environ., 128, 31, 10.1016/j.rse.2012.09.020

Wasowski, 2014, Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives, Eng. Geol., 174, 103, 10.1016/j.enggeo.2014.03.003

Solaro, 2010, Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994–2008, J. Geophys. Res. Solid Earth, 115, B10405, 10.1029/2009JB000820

Closson, D. (2014). Dikes stability monitoring versus sinkholes and subsidence, dead sea region, jordan. Land Applications of Radar Remote Sensing, InTech.

Biggs, 2014, Global link between deformation and volcanic eruption quantified by satellite imagery, Nat. Commun., 5, 3471, 10.1038/ncomms4471

Closson, 2003, Space-borne radar interferometric mapping of precursory deformations of a dyke collapse, Dead Sea area, Jordan, Int. J. Remote Sens., 24, 843, 10.1080/01431160210147388

Nof, 2013, Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry, Geology, 41, 1019, 10.1130/G34505.1

Manunta, 2009, DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain, Earth Surf. Process. Landf., 34, 1562, 10.1002/esp.1848

Palmer, 2017, Creeping earth could hold secret to deadly landslides, Nature, 548, 384, 10.1038/548384a

Notti, 2015, Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain), Landslides, 12, 1007, 10.1007/s10346-015-0612-3

Notti, 2016, Lithological control of land subsidence induced by groundwater withdrawal in new urban areas (Granada Basin, SE Spain). Multiband DInSAR monitoring, Hydrol. Process., 30, 2317, 10.1002/hyp.10793

Mateos, 2017, The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain), Landslides, 14, 743, 10.1007/s10346-016-0723-5

Mateos, 2017, Multiband PSInSAR and long-period monitoring of land subsidence in a strategic detrital aquifer (Vega de Granada, SE Spain): An approach to support management decisions, J. Hydrol., 553, 71, 10.1016/j.jhydrol.2017.07.056

Albano, 2016, An innovative procedure for monitoring the change in soil seismic response by InSAR data: Application to the Mexico City subsidence, Int. J. Appl. Earth Obs. Geoinf., 53, 146

Casu, 2014, SBAS-DInSAR parallel processing for deformation time-series computation, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 3285, 10.1109/JSTARS.2014.2322671

Cuccu, 2015, An on-demand web tool for the unsupervised retrieval of earth’s surface deformation from SAR data: The P-SBAS service within the ESA G-POD environment, Remote Sens., 7, 15630, 10.3390/rs71115630

Berardino, 2002, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375, 10.1109/TGRS.2002.803792

Guzzetti, 2009, Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy, Pure Appl. Geophys., 166, 1425, 10.1007/s00024-009-0491-4

Lanari, 2010, Surface displacements associated with the L’Aquila 2009 Mw 6.3 earthquake (central Italy): New evidence from SBAS-DInSAR time series analysis, Geophys. Res. Lett., 37, 10, 10.1029/2010GL044780

Ciampalini, 2013, Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations, Remote Sens., 5, 3896, 10.3390/rs5083896

Fiaschi, 2017, The complex karst dynamics of the Lisan Peninsula revealed by 25 years of DInSAR observations. Dead Sea, Jordan, ISPRS J. Photogramm. Remote Sens., 130, 358, 10.1016/j.isprsjprs.2017.06.008

Ferrer, M. (2007). Los movimientos de ladera de la provincia de Granada. Atlas de Riesgos Naturales en la Provincia de Granada, Diputación de Granada-Instituto Geológico y Minero de España (IGME).

Fernandez, 2009, First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using the DInSAR technique, Eng. Geol., 105, 84, 10.1016/j.enggeo.2008.12.005

Sousa, 2010, PS-InSAR processing methodologies in the detection of field surface deformation-Study of the Granada basin (Central Betic Cordilleras, southern Spain), J. Geodyn., 49, 181, 10.1016/j.jog.2009.12.002

Ruiz, A.M., Caro Cuenca, M., Sousa, J.J., Gil, A.J., Hanssen, R.F., Perski, Z., Galindo-Zaldívar, J., and Sanz de Galdeano, C. (2011, January 19–23). Land subsidence monitoring in the southern Spanish coast using satellite radar interferometry. Proceedings of the FRINGE 2011, Frascati, Italy.

Meisina, 2008, Geological interpretation of PSInSAR Data at regional scale, Sensors, 8, 7469, 10.3390/s8117469

Bianchini, 2013, Landslide activity maps generation by means of persistent scatterer interferometry, Remote Sens., 5, 6198, 10.3390/rs5126198

Irigaray, 1991, Los movimentos de ladera en el sector de Colmenar (Málaga), Revista de la Sociedad Geológica de España, 4, 203

Biescas, 2007, Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, J. Surv. Eng., 133, 66, 10.1061/(ASCE)0733-9453(2007)133:2(66)

Crosetto, 2011, Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement, Remote Sens., 3, 305, 10.3390/rs3020305

Béjar-Pizarro, M., Guardiola-Albert, C., García-Cárdenas, R.P., Herrera, G., Barra, A., Molina, A.L., Tessitore, S., Staller, A., Ortega-Becerril, J.A., and García-García, R.P. (2016). Interpolation of GPS and geological data using InSAR deformation maps: Method and application to land subsidence in the alto guadalentín aquifer (SE Spain). Remote Sens., 8.

Tessitore, 2016, Comparison of water-level, extensometric, DInSAR and simulation data for quantification of subsidence in Murcia City (SE Spain), Hydrogeol. J., 24, 727, 10.1007/s10040-015-1349-8

Crosetto, 2014, An approach to persistent scatterer interferometry, Remote Sens., 6, 6662, 10.3390/rs6076662

Hamdouni, 2016, Movimientos de ladera en la Costa de Almuñécar y su entorno, Geogaceta, 59, 87

Hooper, 2008, A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys. Res. Lett., 35, 1, 10.1029/2008GL034654

2013, The Zafarraya Polje (Betic Cordillera, Granada, Spain), a basin open by lateral displacement and bending, J. Geodyn., 64, 62, 10.1016/j.jog.2012.10.004

Ruiz-Armenteros, A.M., Delgado, J.M., Sousa, J.J., Hanssen, R.F., Caro, M., Gil, A.J., Galindo-Zaldívar, J., and De Galdeano, C.S. (2015, January 23–27). Deformation monitoring in Zafarraya fault and Sierra Tejeda antiform (Betic cordillera, Spain) using satellite radar interferometry. Proceedings of the FRINGE’15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy.

Delgado, 2011, A deep seated compound rotational rock slide and rock spread in SE Spain: Structural control and DInSAR monitoring, Geomorphology, 129, 252, 10.1016/j.geomorph.2011.02.019

Gutierrez, 2012, Investigating gravitational grabens related to lateral spreading and evaporite dissolution subsidence by means of detailed mapping, trenching, and electrical resistivity tomography (Spanish Pyrenees), Lithosphere, 4, 331, 10.1130/L202.1

Carbonel, 2013, Differentiating between gravitational and tectonic faults by means of geomorphological mapping, trenching and geophysical surveys. The case of the Zenzano Fault (Iberian Chain, N Spain), Geomorphology, 189, 93, 10.1016/j.geomorph.2013.01.020

Crosetto, 2016, Persistent Scatterer Interferometry: A review, ISPRS J. Photogramm. Remote Sens., 115, 78, 10.1016/j.isprsjprs.2015.10.011

Lu, 2014, Investigating spatial patterns of persistent scatterer interferometry point targets and landslide occurrences in the Arno River basin, Remote Sens., 6, 6817, 10.3390/rs6086817

Chaussard, 2015, Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults, Geophys. Res. Lett., 42, 2734, 10.1002/2015GL063575