Evaluation of structure and reproducibility of cluster solutions using the bootstrap

Springer Science and Business Media LLC - Tập 21 Số 1 - Trang 83-101 - 2010
Sara Dolničar1, Friedrich Leisch2,1
1University of Wollongong,
2Ludwig-Maximilians-Universität München

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster analysis. Beverly Hills: Sage.

Brusco, M. J. (2004). Clustering binary data in the presence of masking variables. Psychological Methods, 9(4), 510–523.

Brusco, M. J., Cradit, J. D., & Tashchian, A. (2003). Multicriterion clusterwise regression for joint segmentation settings: An application to customer value. Journal of Marketing Research, 40, 225–234.

Dibb, S., & Simkin, L. (1997). A program for implementing market segmentation. Journal of Business and Industrial Marketing, 12, 51–65.

Dimitriadou, E., Dolnicar, S., & Weingessel, A. (2002). An examination of indexes for determining the number of clusters in binary data sets. Psychometrika, 67(1), 137–160.

Dolnicar, S., & Lazarevski, K. (2009). Methodological reasons for the theory/practice divide in market segmentation. Journal of Marketing Management, 25(3–4), 357–374.

Dolnicar, S., & Leisch, F. (2000). Behavioral market segmentation using the bagged clustering approach based on binary guest survey data: Exploring and visualizing unobserved heterogeneity. Tourism Analysis, 5(2–4), 163–170.

Dubes, R., & Jain, A. K. (1979). Validity studies in clustering methodologies. Pattern Recognition, 11, 235–254.

Dudoit, S., & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering procedure. Bioinformatics, 19(9), 1090–1099.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Monographs on statistics and applied probability. New York: Chapman & Hall.

Evans, J. R., & Berman, B. (1997). Marketing. Englewood Cliffs: Prentice Hall.

Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 41, 578–588.

Frank, R. E., Massy, W. F., & Wind, Y. (1972). Market segmentation. Englewood Cliffs: Prentice Hall.

Greenberg, M., & McDonald, S. (1989). Successful needs/benefits segmentation: A user’s guide. The Journal of Consumer Marketing, 6, 29.

Hothorn, T., Leisch, F., Zeileis, A., & Hornik, K. (2005). The design and analysis of benchmark experiments. Journal of Computational and Graphical Statistics, 14(3), 675–699.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. New York: Wiley.

Kotler, P. (1997). Marketing management: Analysis, planning, implementation and control. Englewood Cliffs: Prentice Hall.

Kotler, P., & Armstrong, G. (2006). Principles of marketing. Upper Saddle River: Prentice Hall.

Leisch, F. (2004). FlexMix: A general framework for finite mixture models and latent class regression in R. Journal of Statistical Software, 11(8), 1–18.

Leisch, F. (2006). A toolbox for k-centroids cluster analysis. Computational Statistics and Data Analysis, 51(2), 526–544.

Martinetz, T., & Schulten, K. (1994). Topology representing networks. Neural Networks, 7(3), 507–522.

Mazanec, J. A., Grabler, K., & Maier, G. (1997). International city tourism: Analysis and strategy. London: Pinter/Cassell.

Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159–179.

Morritt, R. M. (2007). Segmentation strategies for hospitality managers: Target marketing for competitive advantage. Binghamton: Haworth.

Myers, J. H., & Tauber, E. (1977). Market structure analysis. Chicago: American Marketing Association.

R Development Core Team (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Searle, S. R. (1971). Linear models. New York: Wiley.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Monographs on statistics and applied probability. New York: Chapman & Hall.

Strehl, A., & Gosh, J. (2002). Cluster ensembles—a knowldege reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.

Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18, 267–276.

Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3), 511–528.

Titterington, D., Smith, A., & Makov, U. (1985). Statistical analysis of finite mixture distributions. Chichester: Wiley.

Wedel, M., & Boer, P. (2002). Glimmix: A program for estimation of latent class mixture and mixture regression models, version 3.0. Groningen: ProGAMMA.

Wedel, M., & Kamakura, W. A. (1998). Market segmentation—conceptual and methodological foundations. Boston: Kluwer.