Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abadi M (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/, Software available from tensorflow.org
Abraham H (2019) Qiskit: An open-source framework for quantum computing
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, et al. (2019) Quantum supremacy using a programmable superconducting processor. Nature 574 (7779):505–510
Bergholm V, Izaac J, Schuld M, Gogolin C, Blank C, McKiernan K, Killoran N (2018) Pennylane. arXiv:1811.04968
Boddy R, Laird Smith G (2009) Statistical methods in practice: for scientists and technologists. Wiley, Chichester, UK
Bose RC (1947) Mathematical theory of the symmetrical factorial design. SankhyÄ: The Indian Journal of Statistics: 107- 166
Bravyi S, Gosset D, Koenig R, Tomamichel M (2020) Quantum advantage with noisy shallow circuits. Nature Physics 16(10):1040–1045
Coyle B, Mills D, Danos V, Kashefi E (2020) The born supremacy: Quantum advantage and training of an ising born machine. npj Quantum Information 6(1):1–11
Dancey CP, Reidy J (2007) Statistics without maths for psychology. Pearson education
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition pp. 248-255
Deng L (2012) The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine 29 (6):141–142
Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv:1411.4028
Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors
Goldbloom A, Hamner B (2020) Kaggle. https://www.kaggle.com/
Havlicek V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2018) Supervised learning with quantum enhanced feature spaces. Nature 567:209–212. https://doi.org/10.1038/s41586-019-0980-2, arXiv:1804.11326
Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671):242–246
KutinS (2016) qpic. https://github.com/qpic/qpic
Marrero CO, Kieferová M, Wiebe N (2020) Entanglement induced barren plateaus. arXiv:2010.15968
McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18:023023
Meyer DA, Wallach NR (2002) Global entanglement in multiparticle systems. Journal of Mathematical Physics 43(9):4273–4278
Mirjalili SZMH, Sardroudi HM (2012) Stochastic gradient descent for hybrid quantum-classical optimization. Applied Mathematics and Computation 218(22):11125–11137
Nielsen MA, Chuang I (2002) Quantum computation and quantum information. Cambridge University Press, Cambridge
Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, Aspuru-Guzik A, O’Brien JL (2014) A variational eigenvalue solver on a photonic quantum processor. Nature communications 5:4213
Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E, Latorre JI (2020) Data re-uploading for a universal quantum classifier. Quantum 4:226
Riste D, da Silva MP, Ryan CA, Cross AW, Córcoles AD, Smolin JA, Gambetta JM, Chow JM, Johnson BR (2017) Demonstration of quantum advantage in machine learning. NPJ Quantum Information 3(1):1–5
Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019) Evaluating analytic gradients on quantum hardware. Physical Review A 99(3):032331
Schuld M, Bocharov A, Svore K, Wiebe N (2018) Circuit-centric quantum classifiers
Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Physical review letters 122(4):040504
Schuld M, Sweke R, Meyer JJ (2020) The effect of data encoding on the expressive power of variational quantum machinelearning models. arXiv:2008.08605
Sim S, Johnson PD, Aspuru-Guzik A (2019) Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. https://doi.org/10.1002/qute.201900070, arXiv:1905.10876
Stoudenmire EM, Schwab DJ (2016) Supervised learning with quantum-inspired tensor networks. arXiv:1605.05775
Sweke R, Wilde F, Meyer J, Schuld M, Fährmann PK, Meynard- Piganeau B, Eisert J (2019) Stochastic gradient descent for hybrid quantum-classical optimization. arXiv:1910.01155
Vidal JG, Theis DO (2019) Input redundancy for parameterized quantum circuits. arXiv:1901.11434