Evaluation of numerical schemes for capturing shock waves in modeling proppant transport in fractures
Tóm tắt
In petroleum engineering, the transport phenomenon of proppants in a fracture caused by hydraulic fracturing is captured by hyperbolic partial differential equations (PDEs). The solution of this kind of PDEs may encounter smooth transitions, or there can be large gradients of the field variables. The numerical challenge posed in a shock situation is that high-order finite difference schemes lead to significant oscillations in the vicinity of shocks despite that such schemes result in higher accuracy in smooth regions. On the other hand, first-order methods provide monotonic solution convergences near the shocks, while giving poorer accuracy in the smooth regions. Accurate numerical simulation of such systems is a challenging task using conventional numerical methods. In this paper, we investigate several shock-capturing schemes. The competency of each scheme was tested against one-dimensional benchmark problems as well as published numerical experiments. The numerical results have shown good performance of high-resolution finite volume methods in capturing shocks by resolving discontinuities while maintaining accuracy in the smooth regions. These methods along with Godunov splitting are applied to model proppant transport in fractures. It is concluded that the proposed scheme produces non-oscillatory and accurate results in obtaining a solution for proppant transport problems.
Tài liệu tham khảo
Adachi J, Siebrits E, Peirce A, Desroches J. Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci. 2007;44(5):739–57. doi:10.1016/j.ijrmms.2006.11.006.
Barree R, Conway M. Experimental and numerical modeling of convective proppant transport. In: SPE annual technical conference and exhibition, New Orleans, Louisiana; 25–28 Sept 1994. doi:10.2118/28564-MS.
Barree R, Conway M. Experimental and numerical modeling of convective proppant transport (includes associated papers 31036 and 31068). J Pet Technol. 1995;47(3):216–22. doi:10.2118/28564-PA.
Beam RM, Warming R. An implicit factored scheme for the compressible Navier–Stokes equations. AIAA J. 1978;16(4):393–402. doi:10.2514/3.60901.
Behr A, Mtchedlishvili G, Friedel T, Haefner FK. Consideration of damaged zone in a tight gas reservoir model with a hydraulically fractured well. SPE Prod Oper. 2006;21(2):206–11. doi:10.2118/82298-PA.
Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: Wiley; 1960. p. 413.
Boris JP, Book DL. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J Comput Phys. 1973;11(1):38–69. doi:10.1016/0021-9991(73)90147-2.
Burstein SZ, Mirin AA. Third order difference methods for hyperbolic equations. J Comput Phys. 1970;5(3):547–71. doi:10.1016/0021-9991(70)90080-x.
Chen C. High order shock capturing schemes for hyperbolic conservation laws and the application in open channel flows. Ph.D. dissertation, University of Kentucky, Kentucky; 2006.
Colella P. A direct Eulerian MUSCL scheme for gas dynamics. SIAM J Sci Stat Comput. 1985;6(1):104–17. doi:10.1137/0906009.
Daneshy AA. Numerical solution of sand transport in hydraulic fracturing. J Pet Technol. 1978;30(1):132–40. doi:10.2118/5636-PA.
Davis SF. An interface tracking method for hyperbolic systems of conservation laws. Appl Numer Math. 1992;10(6):447–72. doi:10.1016/s0168-9274(06)80001-2.
Economides MJ, Nolte KG. Reservoir stimulation. Sugar Land: Wiley; 2000.
Engquist B, Osher S. One-sided difference approximations for nonlinear conservation laws. Math Comput. 1981;36(154):321–51. doi:10.1090/S0025-5718-1981-0606500-X.
Ertekin T, Abou-Kassem JH, King GR. Basic applied reservoir simulation. Richardson: Society of Petroleum Engineers; 2001.
Fennema RJ, Chaudhry MH. Simulation of one-dimensional dam-break flows. J Hydraul Res. 1987;25(1):41–51. doi:10.1080/00221688709499287.
Fennema RJ, Chaudhry MH. Explicit methods for 2-D transient free surface flows. J Hydraul Eng. 1990;116(8):1013–34. doi:10.1061/(ASCE)0733-9429(1990)116:8(1013).
Friehauf KE. Simulation and design of energized hydraulic fractures. Ph.D. dissertation, The University of Texas at Austin; 2009.
Gadde PB, Liu Y, Norman J, Bonnecaze R, Sharma MM. Modeling proppant settling in water-fracs. In: SPE annual technical conference and exhibition, 2, Houston, Texas, 26–29 Sept 2004. doi:10.2118/89875-MS.
Garcia-Navarro P, Vazquez-Cendon ME. On numerical treatment of the source terms in the shallow water equations. Comput Fluids. 2000;29(8):951–79. doi:10.1016/S0045-7930(99)00038-9.
Godunov SK. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik. 1959;89(3):271–306.
Govier GW, Aziz K. The flow of complex mixtures in pipes. Malabar, FL: Robert E. Krieger Publishing Co.; 1972.
Harten A, Lax PD, Leer BV. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 1983;25(1):35–61. doi:10.1137/1025002.
Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math. 1954;7(1):159–93. doi:10.1002/cpa.3160070112.
Lax P, Wendroff B. Systems of conservation laws. Commun Pure Appl Math. 1960;13(2):217–37. doi:10.1002/cpa.3160130205.
LeVeque RJ. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press; 2004.
Liu Y. Settling and hydrodynamic retardation of proppants in hydraulic fractures. Ph.D. dissertation, The University of Texas at Austin; 2006.
Liu Y, Sharma MM. Effect of fracture width and fluid rheology on proppant settling and retardation: an experimental study. In: SPE annual technical conference and exhibition, Dallas, Texas; 9–12 Oct 2005. doi:10.2118/96208-MS.
Miranda CG, Soliman MY, Settari A, Krampol R. Linking reservoir simulators with fracture simulators. In: SPE eastern regional meeting, Morgantown; 13–15 Oct 2010. doi:10.2118/137752-MS.
Novotny EJ. Proppant transport. In: SPE annual fall technical conference and exhibition, Denver; 9–12 Oct 1977. doi:10.2523/6813-MS.
Ouyang S. Propagation of hydraulically induced fractures with proppant transport. Ph.D. thesis, The University of Texas at Austin; 1994.
Pletcher RH, Tannehill JC, Anderson D. Computational fluid mechanics and heat transfer. Boca Raton: CRC Press; 2012.
Ribeiro LH. Development of a three-dimensional compositional hydraulic fracturing simulator for energized fluids. Ph.D. dissertation, The University of Texas at Austin; 2013.
Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys. 1981;43(2):357–72. doi:10.1016/0021-9991(81)90128-5.
Roe PL. Some contributions to the modelling of discontinuous flows. In: Large-scale computations in fluid mechanics; proceedings of the fifteenth summer seminar on applied mathematics, La Jolla, June 27–July 8, 1983. Part 2 (A85-48201 23–34). American Mathematical Society, Providence; 1985. p 163–93.
Rusanov VV. On difference schemes of third order accuracy for nonlinear hyperbolic systems. J Comput Phys. 1970;5(3):507–16. doi:10.1016/0021-9991(70)90077-x.
Settari A, Puchyr PJ, Bachman RC. Partially decoupled modeling of hydraulic fracturing processes. SPE Prod Eng. 1990;5(1):37–44. doi:10.2118/16031-PA.
Shaoul JR, Behr A, Mtchedlishvili G. Developing a tool for 3D reservoir simulation of hydraulically fractured wells. SPE Reserv Eval Eng. 2007;10(1):50–9. doi:10.2118/108321-PA.
Sharma MM, Gadde PB. The impact of proppant retardation on propped fracture lengths. In: SPE annual technical conference and exhibition, Dallas, Texas; 9–12 Oct 2005. doi:10.2118/97106-MS.
Steger JL, Warming RF. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J Comput Phys. 1981;40(2):263–93. doi:10.1016/0021-9991(81)90210-2.
Stokes GG. On the effect of the internal friction of fluids on the motion of pendulums. Cambridge: Pitt Press; 1850.
van Leer B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys. 1977;23(3):276–99. doi:10.1016/0021-9991(77)90095-X.
Warming RF, Kutler P, Lomax H. Second-and third-order noncentered difference schemes for nonlinear hyperbolic equations. AIAA J. 1973;11(2):189–96. doi:10.2514/3.50449.
Wesseling P. Principles of computational fluid dynamics. Berlin: Springer; 2001.