Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation

E. Langzam1, Eli Isakov2, J. Mizrahi3
1Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
2Loewenstein Rehabilitation Center, Raanana, Israel
3Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel

Tóm tắt

AbstractBackgroundHybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES). Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces.MethodsA "synthetic" database was created fromin-vivoexperiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope.Results and conclusionThe results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process.The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles.

Từ khóa


Tài liệu tham khảo

Genadry WF, Kearney RE, Hunter IW: Dynamic relationship between EMG and torque at the human ankle: variation with contraction level and modulation. Med Biol Eng Comput 1988, 26: 489-493. 10.1007/BF02441916

Rakos M, Freudencshufb B, Girsch W, Hofer C, Kaus J, Meiners T, Paternostro T, Mayr W: Electromyogram-controlled functional electrical stimulation for treatment of paralyzed upper extremity. Artif Organs 1999,23(5):466-469. 10.1046/j.1525-1594.1999.06363.x

Mizrahi J, Verbitsky O, Isakov E: Fatigue-induced changes in decline running. Clin Biomech 2001,16(3):207-212. 10.1016/S0268-0033(00)00091-7

Thorsen R, Ferrarin M, Spadone R, Frigo C: Functional control of the hand in tetraplegics based on residual synergistic EMG activity. Artif Organs 1999,23(5):470-473. 10.1046/j.1525-1594.1999.06362.x

Thorsen R, Spandone R, Ferrarin M: A pilot study of myoelectrically controlled FES of upper extremity. IEEE Trans Neural Syst Rehabil Eng 2001,9(2):161-168. 10.1109/7333.928576

Thorsen R, Ferrarin M, Veltink P: Enhancement of isometric ankle dorsiflexion by automyoelectrically controlled functional electrical stimulation on subjects with upper motor neuron lesions. Neuromodulation 2002,5(4):256-263. 10.1046/j.1525-1403.2002.02035.x

Yeom H, Park Y, Yoon H: Gram-Schmidt M-Wave canceller for the EMG controlled FES. IEICE Trans Inf Sys 2005,E88-D(9):2213-2217. 10.1093/ietisy/e88-d.9.2213

Peasgood W, Whitlock T, Baman A, Fry ME, Jones RS, Davis-Smith A: EMG-controlled closed loop electrical stimulation using digital signal processor. Electron Lett 2000,36(22):1832-1833. 10.1049/el:20001319

Saxena S, Nikolic S, Popovic D: An EMG-controlled system for tetraplegics. J Rehabil Res Dev 1995,32(1):17-24.

Langzam E, Nemirvsky Y, Isakov E, Mizrahi J: Muscle enhancement using closed-loop electrical stimulation: Volitional versus induced torque. J Electromyogr Kinesiol 2006, May 9

Langzam E, Nemirvsky Y, Isakov E, Mizrahi J: Evaluation of volitional and induced torque shares in electrically augmented muscle gait-like contractions. IEEE Trans Neural Syst Rehabil Eng 2006, in press.

Frigo C, Ferrarin M, Frasson W, Paven E, Thorsen R: EMG signals detection and processing for on-line control of functional electrical stimulation. J Electromyogr Kinesiol 2000, 10: 351-360. 10.1016/S1050-6411(00)00026-2

Pierce SR, Laughton CA, Smith BT, Orlin MN, Johnston TE, McCarthy JJ: Direct affect of percutaneous electric stimulation during gait in children with hemiplegic cerebral palsy: A report of 2 cases. Arch Phys Med Rehabil 2004, 85: 339-343. 10.1016/S0003-9993(03)00473-8

Keller T, Ellis MD, Dewald JPA: Overcoming abnormal joint torque patterns in paretic upper extremities using triceps stimulation. Artif Organs 2005,29(3):229-232. 10.1111/j.1525-1594.2005.29041.x

Minzly J, Mizrahi J, Hakim N, Liberson A: Stimulus artifact suppressor for EMG recordings during FES by constant-current stimulator. Med Biol Eng Comput 1993,31(1):72-75. 10.1007/BF02446897

Sennels S, Biering-Sorensen F, Andersen TA, Hansen SD: Functional neuromuscular stimulation controlled by surface electromyographic signals produced by volitional activation of the same muscle: adaptive rempoval of the muscle response from the recorded EMG-signal. IEEE Trans Rehabil Eng 1997,5(2):192-206. 10.1109/86.593293

Knaflitz M, Merletti R: Suppression of simulation artifacts from myoelectric-evoked potential recording. IEEE Trans Biomed Eng 1988,35(9):758-763. 10.1109/10.7278

Yoshida K, Stein RB: Characterization of signals and noise rejection with bipolar longitudinal intrafascicular electrodes. IEEE Trans Biomed Eng 1999, 46: 226-234. 10.1109/10.740885

Andreasen LA, Struijk JJ: Artifact reduction with alternative cuff configurations. IEEE Trans Biomed Eng 2003,50(10):1160-1166. 10.1109/TBME.2003.817633

Hines AE, Cargo PE, Chapman GJ, Billian C: Stimulus artifact removal in EMG from muscles adjacent to stimulated muscle. J Neurosci Methods 1996, 64: 55-62. 10.1016/0165-0270(95)00099-2

O'Keeffe DT, Lyons GM, Donnelly AE, Byrne CA: Stimulus artifact removal using a software-based two-stage peak detection algorithm. J Neurosci Methods 2001, 109: 137-145. 10.1016/S0165-0270(01)00407-1

Liang H, Lin Z: Stimulus artifact cancellation in the serosal recordings of gastric myoelectric ctivity using wavelet transform. IEEE Trans Biomed Eng 2002,49(7):681-688. 10.1109/TBME.2002.1010851

Ortolan RL, Mori RN, Pereira RR, Cabral CMN, Pereira JC, Cliquet A: Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. IEEE Trans Neural Syst Rehabil Eng 2003,11(1):60-69. 10.1109/TNSRE.2003.810432

Glitsch U, Baumann W: The three-dimensional determination of internal loads in the lower extremity. J Biomech 1997,30(11/12):1123-1131. 10.1016/S0021-9290(97)00089-4

Minzly J, Mizrahi J, Isakov E, Susak Z, Verbeke M: Computer-controlled portable stimulator for paraplegic patients. J Biomed Eng 1993,15(4):333-338. 10.1016/0141-5425(93)90012-N

Olney SJ, Winter DA: Predictions of knee and ankle moments of force in walking from EMG and kinematic data. J Biomech 1985,18(1):9-20. 10.1016/0021-9290(85)90041-7

Lloyd BG, Besier TF: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 2003,36(6):765-776. 10.1016/S0021-9290(03)00010-1