Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions

Horticulture, Environment, and Biotechnology - Tập 61 Số 3 - Trang 433-443 - 2020
Yu Kyeong Shin1, Shiva Ram Bhandari1, Myeong Cheol Cho2, Jun Gu Lee1
1Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
2Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA, Wanju, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelgawad KF, El-Mogy MM, Mohamed MIA, Garchery C, Stevens RG (2019) Increasing ascorbic acid content and salinity tolerance of cherry tomato plants by suppressed expression of the ascorbate oxidase gene. Agronomy 9:51. https://doi.org/10.3390/agronomy9020051

Acosta-Motos JR, Ortuno MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

Al-Harbi A, Hejazi A, Al-Omran A (2017) Responses of grafted tomato (Solanum lycopersicon L.) to abiotic stresses in Saudi Arabia. Saudi J Biol Sci 24:1274–1280. https://doi.org/10.1016/j.sjbs.2016.01.005

Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056. https://doi.org/10.1104/pp.123.3.1047

Amini S, Ghobadi C, Yamchi A (2015) Proline accumulation and osmotic stress: an overview of P5CS gene in plants. J Plant Mol Biol Breed 3:44–55. https://doi.org/10.22058/jpmb.2015.17022

Bacarin MA, Deuner S, Paulinho da Silva FS, Cassol D, Silva DM (2011) Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. Braz J Plant Physiol 23:245–253

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

Bhandari SR, Kim YH, Lee JG (2018) Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings. Hortic Sci Technol 36:619–629. https://doi.org/10.12972/kjhst.20180062

Chaichi MR, Keshavarz-Afshar R, Lu B, Rostamza M (2017) Growth and nutrient uptake of tomato in response to application of saline water, biological fertilizer, and surfactant. J Plant Nutr 40:457–466

Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058. https://doi.org/10.1093/jxb/erj102

De Oliveira AB, Alencar NLM, Gomes-Filho E (2013) Comparison between the water and salt stress effects on plant growth and development. In: Akinci S (ed) Responses of organisms to water stress. IntechOpen, London, pp 67–94. https://doi.org/10.5772/54223

FAO (2017) Agricultural statistical database. http://www.fao.org/faostat/en/?#data/QC. Accessed 05 May 2019

Foyer CH, Harbison J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P (eds) Causes of photooxidative stresses and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

Garcia-Caparros P, Lao MT (2018) The effects of salt stress on ornamental plants and integrative cultivation practices. Sci Hortic 240:430–439. https://doi.org/10.1016/j.scienta.2018.06.022

Gong B, Wen D, VandenLangenberg K, Wei M, Yang F, Shi Q, Wang X (2013) Comparative effect of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci Hortic 157:1–12. https://doi.org/10.1016/j.scienta.2013.03.032

Gorbe E, Calatayud A (2012) Application of chlorophyll fluorescence imaging technique in horticultural research. Sci Hortic 138:24–35. https://doi.org/10.1016/j.scienta.2012.02.002

Goussi R, Manaa A, Derbali W, Cantamessa S, Abdelly C, Barbato R (2018) Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsugina. J Photochem Photobiol B Biol 183:275–287. https://doi.org/10.1016/j.jphotobiol.2018.04.047

He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66:270–278. https://doi.org/10.1016/j.envexpbot.2009.02.007

Hossain MM, Nonami H (2012) Effect of salt stress on physiological response of tomato fruit grown in hydroponic system. Hortic Sci (Prague) 39:26–32

Im JS, Cho JH, Cho KS, Chang DC, Jin YI, Yu HS, Kim WY (2016) Effect of salinity stress on growth, yield, and proline accumulation of cultivated potatoes (Solanum tuberosum L.). Korean J Hortic Sci Technol 34:818–829. https://doi.org/10.12972/kjhst.20160086

Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. https://doi.org/10.1007/s11738-016-2113-y

Kissoudis C, Sunarti S, van de Wiel C, Visser RGF, van der Linden CG, Bai Y (2016) Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. J Exp Bot 67:5119–5132. https://doi.org/10.1093/jxb/erw285

Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress level. Ind Crops Prod 31:13–19. https://doi.org/10.1016/j.indcrop.2009.07.015

Lichtenthaler HK, Langsdorf G, Lenk S, Buschmann C (2005) Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43:355–369. https://doi.org/10.1007/s11099-005-0060-8

Lu C, Nianwei Q, Wang B, Zhang J (2003) Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J Exp Bot 54:851–860. https://doi.org/10.1093/jxb/erg080

Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282. https://doi.org/10.1016/j.envexpbot.2006.02.002

Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68. https://doi.org/10.1016/j.phytochem.2017.04.016

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. https://doi.org/10.1093/jexbot/51.345.659

Moradi F, Ismail A (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173. https://doi.org/10.1093/aob/mcm052

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochem Biophy Acta 1767:414–421. https://doi.org/10.1016/j.bbabio.2006.11.019

Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998. https://doi.org/10.1093/jxb/ert208

Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. https://doi.org/10.1093/aob/mcw191

Oztekin GB, Tuzel Y (2011) Comparative salinity responses among tomato genotypes and rootstocks. Pak J Bot 43:2665–2672

Reddy INBL, Kim B-K, Yoon I-S, Kim K-H, Kwon T-R (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24:123–144. https://doi.org/10.1016/j.rsci.2016.09.004

Singh J, Sastry EVD, Singh V (2012) Effect of salinity on tomato (Lycopersicum esculentum Mill.) during seed germination stage. Physiol Mol Biol Plants 18:45–50. https://doi.org/10.1007/s12298-011-0097-z

Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabisopsis and the halophyte Thellungiella: role of plastid terminal oxidase as an alternative election sink. Plant Physiol 149:1154–1165. https://doi.org/10.1104/pp.108.132407

Taffouo VD, Nouck AH, Dibong SD, Amougou A (2010) Effects of salinity stress on seedling growth, numeral nutrients, and total chlorophyll of some tomato (Lycopersicum esculentum, L.) cultivars. Afr J Biotechnol 9:5366–5372

Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei Sci Fis Nat 19:325–346. https://doi.org/10.1007/s12210-008-0022-8

Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140. https://doi.org/10.1199/tab.0140

Warren CR (2008) Rapid measurement of chlorophylls with a mircoplate reader. J Plant Nutr 31:1321–1332. https://doi.org/10.1080/01904160802135092

Wei P, Yang Y, Fang M, Wang F, Chen H (2016) Physiological response of young seedlings from five accessions of Diospyros L. under salinity stress. Korean J Hortic Sci Technol 34:564–577. https://doi.org/10.12972/kjhst.20160058

Zhang P, Senge M, Dai Y (2016) Effect of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev Agric Sci 4:46–55. https://doi.org/10.7831/ras.4.46

Zhang P, Senge M, Dai Y (2017) Effect of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun Soil Sci Plant Anal 48:624–634. https://doi.org/10.1080/00103624.2016.1269803

Zhao F, Guo Y, Huang Y, Verhoef W, van der Tol C, Dai B, Liu L, Zhao H, Liu G (2015) Quantitative estimation of fluorescence parameters for crop leaves with bayesian inversion. Remote Sens 7:14179–14199. https://doi.org/10.3390/rs71014179

Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann J Plant Biol 14:267–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

Zribi L, Fatma G, Fatma R, Salwa R, Hassan N, Neejib RM (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato ‘‘Solanum lycopersicum (variety Rio Grande)”. Sci Hortic 120:367–372. https://doi.org/10.1016/j.scienta.2008.11.025

Zushi K, Matsuzoe N (2017) Using a chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci Hortic 219:216–221. https://doi.org/10.1016/j.scienta.2017.03.016