Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates

Springer Science and Business Media LLC - Tập 14 - Trang 1-6 - 2015
Kazım Sahin1, Ayse Tekin2, Sule Ozdas3, Demet Akin4, Hande Yapislar5, Aziz Ramazan Dilek1, Emine Sonmez6
1Department of Microbiology, Medical Faculty, Recep Tayyip Erdogan University, Rize, Turkey
2Department of Infectious Diseases, Cengiz Gökcek Women and Obstetrics Hospital, Gaziantep, Turkey
3Department of Molecular Biology and Genetics, Medical Faculty, Istanbul Bilim University, Esentepe-Sisli-Istanbul, Turkey
4Department of Pharmacology, Medical Faculty, Istanbul Bilim University, Esentepe-Sisli-Istanbul, Turkey
5Department of Physiology, Medical Faculty, Istanbul Bilim University, Esentepe-Sisli-Istanbul, Turkey
6Department of Infectious Diseases, Medical Faculty, Recep Tayyip Erdogan University, Rize, Turkey

Tóm tắt

Bacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated. In total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK®2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR. The OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05). The finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.

Tài liệu tham khảo

Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–8. Patel JB, Rasheed JK, Kitchel B. Carbapenemases in Enterobacteriaceae: activity, epidemiology, and laboratory detection. Clin Microbiol Newsl. 2009;31:55–62. Shah PM. Parenteral carbapenems. Clin Microbiol Infect. 2008;14(Suppl 1):175–80. Performance standards for antimicrobial susceptibility testing, 21st informational supplement. Clinical and Laboratory Standards Institute; 2013. Tsakris A, Kristo I, Poulou A, Markou F, Ikonomidis A, Pournaras S. First occurrence of KPC-2-possessing Klebsiella pneumoniae in a Greek hospital and recommendation for detection with boronic acid disc tests. J Antimicrob Chemother. 2008;62:1257–60. Wei ZQ, Du XX, Yu YS, Shen P, Chen YG, Li LJ. Plasmid-mediated KPC-2 in a K. pneumoniae isolate from China. Antimicrob Agents Chemother. 2007;51:763–5. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440–58 (table of contents). Gür D, Hasçelik G, Aydın N, Telli M, Gültekin M, Ogul D. Antimicrobial resistance in gram-negative hospital isolates: results of the Turkish HITIT-2 Surveillance Study of 2007. J Chemother. 2009;21:383–9. Korten V, Ulusoy S, Zarakolu P, Mete B. Antibiotic resistance surveillance over a 4-year period (2000–2003) in Turkey: results of the MYSTIC Program. Diagn Microbiol Infect Dis. 2007;59:453–7. Yan JJ, Wu JJ, Tsai SH, Chuang CL. Comparison of the double-disk, combined disk, and E test methods for detecting metallo-beta-lactamases in gram-negative bacilli. Diagn Microbiol Infect Dis. 2004;49:5–11. Us E, Tekeli A, Arıkan Akan O, Dolapçı I, Şahin F, Karahan ZC. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae strains isolated between 2004–2007 in Ankara University Hospital, Turkey. Mikrobiyol Bul. 2010;44(1):1–10. Yanık K, Emir D, Eroglu C, Karadag A, Guney AK, Gunaydin M. Investigation of the presence of New Delhi metallo-beta-lactamase-1 (NDM-1) by PCR in carbapenem-resistant gram-negative isolates. Mikrobiyol Bul. 2013;47(2):382–4. Aktas Z, Kayacan CB, Schneider I, Can B, Midilli K, Bauernfeind A. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy. 2008;54:101–6. Poirel L, Özdamar M, Ocampo-Sosa AA, Türkoğlu S, Ozer UG, Nordmann P. NDM-1-producing Klebsiella pneumoniae now in Turkey. Antimicrob Agents Chemother. 2012;56:2784–5. Perez F, Van Duin D. Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med. 2013;80:225–33. Saidel-Odes L, Borer A. Limiting and controlling carbapenem-resistant. Infect Drug Resist. 2013;7:9–14. Nguyen M, Eschenauer GA, Bryan M, O’Neil K, Furuya EY, Della-Latta P, et al. Carbapenem-resistant Klebsiella pneumoniae bacteremia: factors correlated with clinical and microbiologic outcomes. Diagn Microbiol Infect Dis. 2010;67:180–4. Dizbay M, Tunccan OG, Karasahin O, Aktas F. Emergence of carbapenem-resistant Klebsiella spp infections in a Turkish university hospital: epidemiology and risk factors. J Infect Dev Ctries. 2014;8:044–9. Teo J, Cai Y, Tang S, Lee W, Tan TY, Tan TT, et al. Risk factors, molecular epidemiology and outcomes of ertapenem-resistant, carbapenem-susceptible Enterobacteriaceae: a case–case–control study. PLoS One. 2012;7:e34254. Yigit H, Queenan AM, Rasheed JK, Biddle JW, Domenech-Sanchez A, Alberti S, et al. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob Agents Chemother. 2003;47:3881–9. Raghunathan A, Samuel L, Tibbetts RJ. Evaluation of a real-time PCR assay for the detection of the Klebsiella pneumoniae carbapenemase genes in microbiological samples in comparison with the modified Hodge test. Am J Clin Pathol. 2011;135:566–71. Song W, Hong SG, Yong D, Jeong SH, Kim HS, et al. Combined use of the modified Hodge test and carbapenemase inhibition test for detection of carbapenemase-producing Enterobacteriaceae and metallo-β-lactamase-producing Pseudomonas spp. Ann Lab Med. 2015;35:212–9. Alp E, Percin D, Colakoglu S, Durmaz S, Kurkcu CA, Ekincioglu P, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect. 2013;84:178–80. Carrer A, Poirel L, Yılmaz M, Akan OA, Feriha C, Cuzon G, et al. Spread of OXA-48 encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother. 2010;54:1369–73. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Huang TD, Nordmann P. Plasmid-encoded carbapenem hydrolyzing beta-lactamase OXA-48 in an imipenem susceptible Klebsiella pneumoniae strain from Belgium. Antimicrob Agents Chemother. 2008;52:3463–4. Matar GM, Cuzon G, Araj GF, Naas T, Corkill J, Kattar MM, et al. Oxacillinase-mediated resistance to carbapenems in Klebsiella pneumoniae from Lebanon. Clin Microbiol Infect. 2008;14:887–8. Baroud M, Dandache I, Araj GF, Wakim R, Kanj S, Kanafani Z, et al. Underlying mechanisms of carbapenem resistance in extended spectrum beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents. 2013;41:75–9. Eser Koseoglu O, Uludag Altun H, Ergin A, Boral B, Sener B, Hascelik G. Carbapenem resistance in ESBL positive Enterobacteriaceae isolates causing invasive infections. Mikrobiyol Bul. 2014;48(1):59–69. Voulgari E, Zarkotou O, Ranellou K, Karageorgopoulos DE, Vrioni G, Mamali V, et al. Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J Antimicrob Chemother. 2013;68:84–8. Pano-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco C, Gomez-Gil R, Mora- Rillo M, et al. Infections caused by OXA-48-producing Klebsiella pneumoniae in a tertiary hospital in Spain in the setting of a prolonged, hospital-wide outbreak. J Antimicrob Chemother. 2013;68:89–96. Adler A, Shklyar M, Schwaber MJ, Navon-Venezia S, Dhaher Y, Edgar R, et al. Introduction of OXA-48-producing Enterobacteriaceae to Israeli hospitals by medical tourism. J Antimicrob Chemother. 2011;66:2763–6.