Đánh giá Enzim Lipase Candida rugosa được Immobil hóa trên Nanoparticle từ Từ tính trong Quá trình Thủy Este Hóa để Sản xuất Biodiesel

Applied Biochemistry and Biotechnology - Tập 194 - Trang 5419-5442 - 2022
Otávio Domingues1, Daniela Remonatto1, Letícia Karen dos Santos2, Julián Paul Martínez Galán3, Danilo Luiz Flumignan2,4, Ariela Veloso de Paula1
1Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
2Department of Organic Chemistry, Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil and Derivatives, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
3School of Nutrition and Dietetic, University of Antioquia (UdeA), Medellin, Colombia
4Mato Grosso Federal Institute of Education, Science and Technology (IFSC), Cuiabá, Brazil

Tóm tắt

Nghiên cứu này nhằm (i) chuẩn bị các nanoparticle maghemite được chức năng hóa để immobil hóa lipase Candida rugosa (CRL) bằng liên kết cộng hóa trị, (ii) đánh giá ứng dụng của dẫn xuất đã immobil hóa trong quá trình thủy phân dầu ăn thải (WCO) thành axit béo, và (iii) đánh giá tiềm năng của vật liệu thủy phân cho sản xuất biodiesel thông qua quá trình thủy este hóa. Maghemite (γFe2O3) được tạo ra bằng cách kết tủa Fe3Cl2 với NH4OH đã được sử dụng như một chất đỡ hiệu quả cho việc immobil hóa CRL bằng liên kết cộng hóa trị. Phổ hồng ngoại biến đổi Fourier và phân tích hoạt hóa thủy phân chỉ ra rằng CRL đã được immobil hóa cộng hóa trị trên bề mặt của chất đỡ maghemite. Dẫn xuất này cho thấy hoạt động 166,62 ± 8 U g−1 trong quá trình thủy phân WCO ở 40 °C và pH 6. Kính hiển vi điện tử quét cho thấy, sau khi lipase được immobil hóa, các nanoparticle trở nên phân tán hơn, điều này có lợi cho các phản ứng biocatalysis, vì nó làm tăng diện tích tiếp xúc với chất nền. Quá trình thủy phân WCO đã thu được 96 ± 0,2 wt% axit béo tự do. Trong bước thứ hai, axit béo tự do đã được ester hóa hóa học với axit sulfuric, cho ra 94,4 ± 0,02 wt% este methyl axit béo (biodiesel). Những phát hiện của nghiên cứu này đóng góp cho lĩnh vực công nghệ sinh học và có thể thúc đẩy sự phát triển của công nghệ enzym cho sự tổng hợp các sản phẩm có sự quan tâm kinh tế và xã hội.

Từ khóa

#Biodiesel #Immobilization #Enzymatic hydrolysis #Magnetic nanoparticles #Candida rugosa lipase

Tài liệu tham khảo

Remonatto, D., Ferrari, B. R., Bassan, J. C., Mussagy, C. U., de Carvalho Santos-Ebinuma, V., & de Paula, A. V. (2021). Utilization of clay materials as support for Aspergillus japonicus Lipase: An eco-friendly approach. Catalysts, 11(10), 1173. https://doi.org/10.3390/CATAL11101173 Bassan, N., Rodrigues, R. H., Monti, R., Tecelão, C., Ferreira-Dias, S., & Paula, A. V. (2019). Enzymatic modification of grapeseed (Vitis vinifera L.) oil aiming to obtain dietary triacylglycerols in a batch reactor. LWT, 99, 600–606. https://doi.org/10.1016/J.LWT.2018.05.013 Wancura, J. H. C., Rosset, D. V., Ugalde, G. A., Oliveira, J. V., Mazutti, M. A., Tres, M. V., & Jahn, S. L. (2019). Feeding strategies of methanol and lipase on eversa® transform-mediated hydroesterification for FAME production. The Canadian Journal of Chemical Engineering, 97(S1), 1332–1339. https://doi.org/10.1002/cjce.23404 dos Santos, L. K., Hatanaka, R. R., de Oliveira, J. E., & Flumignan, D. L. (2017). Experimental factorial design on hydroesterification of waste cooking oil by subcritical conditions for biodiesel production. Renewable Energy, 114, 574–580. https://doi.org/10.1016/J.RENENE.2017.07.066 Remonatto, D., Oliveira, J. V., Guisan, J. M., Oliveira, D., Ninow, J., & Fernandez-Lorente, G. (2022). Immobilization of eversa lipases on hydrophobic supports for ethanolysis of sunflower oil solvent-free. Applied Biochemistry and Biotechnology, 1–17. https://doi.org/10.1007/S12010-021-03774-8/FIGURES/5 Miotti, R. H., Jr., Cortez, D. V., & de Castro, H. F. (2022). Transesterification of palm kernel oil with ethanol catalyzed by a combination of immobilized lipases with different specificities in continuous two-stage packed-bed reactor. Fuel, 310, 122343. https://doi.org/10.1016/J.FUEL.2021.122343 da Silva Corrêa, L., Henriques, R. O., Rios, J. V., Lerin, L. A., de Oliveira, D., & Furigo, A. (2020). Lipase-catalyzed esterification of geraniol and citronellol for the synthesis of terpenic esters. Applied Biochemistry and Biotechnology, 190(2), 574–583. https://doi.org/10.1007/s12010-019-03102-1 de Meneses, A. C., Lerin, L. A., Araújo, P. H. H., Sayer, C., & de Oliveira, D. (2019). Benzyl propionate synthesis by fed-batch esterification using commercial immobilized and lyophilized Cal B lipase. Bioprocess and Biosystems Engineering, 42(10), 1625–1634. https://doi.org/10.1007/s00449-019-02159-w Shuai, W., Das, R. K., Naghdi, M., Brar, S. K., & Verma, M. (2017). A review on the important aspects of lipase immobilization on nanomaterials. Biotechnology and Applied Biochemistry, 64(4), 496–508. https://doi.org/10.1002/bab.1515 Domínguez De María, P., Sánchez-Montero, J. M., Sinisterra, J. V., & Alcántara, A. R. (2006). Understanding Candida rugosa lipases: An overview. Biotechnology Advances, 24(2), 180–196. https://doi.org/10.1016/j.biotechadv.2005.09.003 Remonatto, D., Miotti Júnior, R. H., Monti, R., Bassan, J. C., & de Paula, A. V. (2022). Applications of immobilized lipases in enzymatic reactors: A review. Process Biochemistry. https://doi.org/10.1016/J.PROCBIO.2022.01.004 Poppe, J. K., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2015, September 1). Enzymatic reactors for biodiesel synthesis: Present status and future prospects. Biotechnology Advances. Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2015.01.011 Filho, D. G., Silva, A. G., & Guidini, C. Z. (2019). Lipases: Sources, immobilization methods, and industrial applications. Applied Microbiology and Biotechnology, 103(18), 7399–7423. https://doi.org/10.1007/s00253-019-10027-6 Abdulla, R., & Ravindra, P. (2013). Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass and Bioenergy, 56, 8–13. https://doi.org/10.1016/J.BIOMBIOE.2013.04.010 Xie, W., & Huang, M. (2018). Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management, 159, 42–53. https://doi.org/10.1016/J.ENCONMAN.2018.01.021 Xie, W., & Zang, X. (2018). Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans-free plastic fats. Food Chemistry, 257, 15–22. https://doi.org/10.1016/J.FOODCHEM.2018.03.010 Rajput, S., Pittman, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/j.jcis.2015.12.008 Peng, X., Wang, Y., Tang, X., & Liu, W. (2011). Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(II). Dyes and Pigments, 91(1), 26–32. https://doi.org/10.1016/j.dyepig.2011.01.012 Remonatto, D., Miotti, R. H., Monti, R., Bassan, J. C., & de Paula, A. V. (2022). Applications of immobilized lipases in enzymatic reactors: A review. Process Biochemistry, 114, 1–20. https://doi.org/10.1016/J.PROCBIO.2022.01.004 Xie, W., & Wang, J. (2014). Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/Poly(styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy and Fuels, 28(4), 2624–2631. https://doi.org/10.1021/EF500131S/ASSET/IMAGES/LARGE/EF-2014-00131S_0012.JPEG Xie, W., & Zang, X. (2016). Immobilized lipase on core-shell structured Fe3O4-MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chemistry. https://doi.org/10.1016/j.foodchem.2015.09.009 Wu, W., Wu, Z., Yu, T., Jiang, C., & Kim, W.-S. (2015). Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials, 16(2), 023501. https://doi.org/10.1088/1468-6996/16/2/023501 Lucena, G. N., dos Santos, C. C., Pinto, G. C., da Rocha, C. O., Brandt, J. V., de Paula, A. V., & Marques, R. F. C. (2019). Magnetic cross-linked enzyme aggregates (MCLEAs) applied to biomass conversion. Journal of Solid State Chemistry, 270, 58–70. https://doi.org/10.1016/J.JSSC.2018.11.003 Sheldon, R. A., Basso, A., & Brady, D. (2021). New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy. Chemical Society Reviews, 50(10), 5850–5862. https://doi.org/10.1039/D1CS00015B Dunlop, D. J., & Özdemir, Ö. (1997). Rock magnetism: Fundamentals and frontiers. Cambridge Studies in Magnetism. Zhong, L., Feng, Y., Wang, G., Wang, Z., Bilal, M., Lv, H., … Cui, J. (2020, June 1). Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. International Journal of Biological Macromolecules. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.02.258 Gomes de Souza, F., Marins, J. A., Rodrigues, C. H. M., & Pinto, J. C. (2010). A magnetic composite for cleaning of oil spills on water. Macromolecular Materials and Engineering, 295(10), 942–948. https://doi.org/10.1002/mame.201000090 Hanefeld, U., Gardossi, L., & Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews, 38(2), 453–468. https://doi.org/10.1039/B711564B Trindade Ximenes, I. A., de Oliveira, P. C. O., Wegermann, C. A., & de Moraes, M. C. (2021). Magnetic particles for enzyme immobilization: A versatile support for ligand screening. Journal of Pharmaceutical and Biomedical Analysis, 204, 114286. https://doi.org/10.1016/J.JPBA.2021.114286 de Sousa, J. S., Cavalcanti-Oliveira, E. D. A., Aranda, D. A. G., & Freire, D. M. G. (2010). Application of lipase from the physic nut (Jatropha curcas L) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 65(1–4), 133–137. https://doi.org/10.1016/j.molcatb.2010.01.003 Mendes, D. B., Silva, F. F. D., Guarda, P. M., Almeida, A. F., Oliveira, D. P. D., Morais, P. B., & Guarda, E. A. (2019). Lipolytic enzymes with hydrolytic and esterification activities produced by filamentous fungi isolated from decomposition leaves in an aquatic environment. Enzyme Research, 2019. https://doi.org/10.1155/2019/8182425 Barnebey, H. L., & Brown, A. C. (1948). Continuous fat splitting plants using the Colgate-Emery process. Journal of the American Oil Chemists’ Society, 25(3), 95–99. https://doi.org/10.1007/BF02579733 Pourzolfaghar, H., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review of the enzymatic hydroesterification process for biodiesel production. Renewable and Sustainable Energy Reviews, 61, 245–257. https://doi.org/10.1016/J.RSER.2016.03.048 Kulkarni, M. G., & Dalai, A. K. (2006). Waste cooking oil an economical source for biodiesel: A review. Industrial & Engineering Chemistry Research, 45(9), 2901–2913. https://doi.org/10.1021/ie0510526 Kumar, V., Jahan, F., Raghuwanshi, S., Mahajan, R. V., & Saxena, R. K. (2013). Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis. Biotechnology and Bioprocess Engineering, 18(4), 787–795. https://doi.org/10.1007/s12257-012-0793-8 Vescovi, V., Kopp, W., Guisán, J. M., Giordano, R. L. C., Mendes, A. A., & Tardioli, P. W. (2016). Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino- glutaraldehyde spacer arms. Process Biochemistry, 51(12), 2055–2066. https://doi.org/10.1016/j.procbio.2016.09.016 Paula, A. V., Nunes, G. F. M., Santos, J. C., & de Castro, H. F. (2011). Interesterification of milkfat with soybean oil catalysed by Rhizopus oryzae lipase immobilised on SiO2-PVA on packed bed reactor. International Journal of Food Science & Technology, 46(10), 2124–2130. https://doi.org/10.1111/J.1365-2621.2011.02726.X Tourinho, F. A., Depeyrot, J., Silva, G. J. da, & Lara, M. C. L. (1998). Electric double layered magnetic fluids (EDL-MF) based on spinel ferrite nanostructures [(M1-x+2Fex+3)]A [(Fe2-x+3 Mx+2)]BO4-2. Brazilian Journal of Physics. https://doi.org/10.1590/s0103-97331998000400016 American Oil Chemist Society. (2012). AOCS Ca 5a–40: Free fatty acids. American Oil Chemist Society. Materials, A. S. for T. and. (2016). ASTM D6304–16e1: Standard test method for determination of water in petroleum products, lubricating oils, and additives by coulometric Karl Fischer titration. West Conshohocken, PA,: American Society for Testing and Materials. https://doi.org/10.1520/D6304-16E01 Associação Brasileira de Normas Técnicas. (2015). ABNT NBR 15908:2015: BIODIESEL - Determinação do glicerol livre, mono-, di-, triacilgliceróis e glicerol total por cromatografia gasosa. Rio de Janeiro, RJ: Associação Brasileira de Normas Técnicas. ISO International standard. (1990). ET ISO 5508:1990: Animal and vegetable fats and oils - Analysis by gas chromatography of methyl esters of fatty acids. Switzerland: ISO International standard. dos Santos, L. K., Botti, R. F., de Mello Innocentini, M. D., Marques, R. F. C., Colombo, P., de Paula, A. V., & Flumignan, D. L. (2021). 3D printed geopolymer: An efficient support for immobilization of Candida rugosa lipase. Chemical Engineering Journal, 414, 128843. https://doi.org/10.1016/J.CEJ.2021.128843 Hassan, S. Z., & Vinjamur, M. (2014). Parametric effects on kinetics of esterification for biodiesel production: A Taguchi approach. Chemical Engineering Science, 110, 94–104. https://doi.org/10.1016/j.ces.2013.11.049 Hao, Y., Chen, Y., Xia, H., & Gao, Q. (2019). Surface chemical functionalization of starch nanocrystals modified by 3-aminopropyl triethoxysilane. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2018.12.200 Liang, Y., Huang, J., Zang, P., Kim, J., & Hu, W. (2014). Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response. Applied Surface Science, 322, 202–208. https://doi.org/10.1016/j.apsusc.2014.10.097 Lehninger N., D., & Cox M., M. (2009). Principios de Bioquímica. Lehninger - Principios de Bioquimica 5ed. Wang, X. Y., Jiang, X. P., Li, Y., Zeng, S., & Zhang, Y. W. (2015). Preparation Fe3O4@ chitosan magnetic particles for covalent immobilization of lipase from Thermomyceslanuginosus. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2015.01.020 Ozyilmaz, E., Bayrakci, M., & Yilmaz, M. (2016). Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Bioorganic Chemistry.https://doi.org/10.1016/j.bioorg.2015.12.001 Guidini, C. Z., Fischer, J., Santana, L. N. S., Cardoso, V. L., & Ribeiro, E. J. (2010). Immobilization of Aspergillus oryzae β-galactosidase in ion exchange resins by combined ionic-binding method and cross-linking. Biochemical Engineering Journal, 52(2–3), 137–143. https://doi.org/10.1016/J.BEJ.2010.07.013 Guisan, J. M., López-Gallego, F., Bolivar, J. M., Rocha-Martín, J., & Fernandez-Lorente, G. (2020). The science of enzyme immobilization. In Methods in Molecular Biology (Vol. 2100, pp. 1–26). Humana Press Inc. https://doi.org/10.1007/978-1-0716-0215-7_1 Pavia, D., Lampman, G., Kriz, G., & Vyvyan, J. (2012). Introdução à espectroscopia.Cengage Learning. https://doi.org/10.1590/S0100-40422007000700048 Ball, D. W. (2009). The basics of spectroscopy. The Basics of Spectroscopy. DOI, 10(1117/3), 422981. Izrael Živković, L. T., Živković, L. S., Babić, B. M., Kokunešoski, M. J., Jokić, B. M., & Karadžić, I. M. (2015). Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochemical Engineering Journal, 93, 73–83. https://doi.org/10.1016/j.bej.2014.09.012 Ali, Z., Tian, L., Zhang, B., Ali, N., Khan, M., & Zhang, Q. (2017). Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe3O4@KCC-1) and their application in immobilization of lipase from: Candida rugosa with enhanced catalytic activity and stability. New Journal of Chemistry, 41(16), 8222–8231. https://doi.org/10.1039/c7nj01912b Brígida, A. I. S., Calado, V. M. A., Gonçalves, L. R. B., & Coelho, M. A. Z. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2009.10.005 Silva, M. O. da, Carneiro, M. L. B., Siqueira, J. L. N., Báo, S. N., & Souza, A. R. de. (2017). Development of a promising antitumor compound based on rhodium(II) succinate associated with iron oxide nanoparticles coated with lauric acid/albumin hybrid: Synthesis, colloidal stability and cytotoxic effect in breast carcinoma cells. Journal of Nanoscience and Nanotechnology. https://doi.org/10.1166/jnn.2018.15021 Calmon, M. F., de Souza, A. T., Candido, N. M., Raposo, M. I. B., Taboga, S., Rahal, P., & Nery, J. G. (2012). A systematic study of transfection efficiency and cytotoxicity in HeLa cells using iron oxide nanoparticles prepared with organic and inorganic bases. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2012.05.026 Millan, A., Palacio, F., Falqui, A., Snoeck, E., Serin, V., Bhattacharjee, A., … Gilbert, I. (2007). Maghemite polymer nanocomposites with modulated magnetic properties.Acta Materialia. https://doi.org/10.1016/j.actamat.2006.11.020 Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrences and uses: second ed. WILEY-VCH GmbH&Co. KGaA. https://doi.org/10.1002/3527602097 Badoei-dalfard, A., Malekabadi, S., Karami, Z., & Sargazi, G. (2019). Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil. Renewable Energy, 141, 874–882. https://doi.org/10.1016/j.renene.2019.04.061 Barriuso, J., Vaquero, M. E., Prieto, A., & Martínez, M. J. (2016). Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnology Advances, 34(5), 874–885. https://doi.org/10.1016/j.biotechadv.2016.05.004 Li, G., Chen, Y., Fang, X., Su, F., Xu, L., & Yan, Y. (2018). Identification of a hot-spot to enhance: Candida rugosa lipase thermostability by rational design methods. RSC Advances, 8(4), 1948–1957. https://doi.org/10.1039/c7ra11679a Hadadi, M., & Habibi, A. (2019). Candida rugosa lipase immobilized on functionalized magnetic Fe3O4 nanoparticles as a sustainable catalyst for production of natural epoxides. Chemical Papers, 73(8), 1917–1929. https://doi.org/10.1007/S11696-019-00741-W/TABLES/3 Jafarian, F., Bordbar, A. K., Zare, A., & Shams-Solari, E. (2020). An enzymatic performance for a new swift magnetically detachable bio-conjugate of Candida rugosa lipase with modified Fe3O4–graphene oxide nanocomposite. Journal of the Iranian Chemical Society, 17(2), 367–382. https://doi.org/10.1007/S13738-019-01773-5/FIGURES/15 Talukder, M. M. R., Wu, J. C., & Chua, L. P. L. (2010). Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification. Energy and Fuels, 24(3), 2016–2019. https://doi.org/10.1021/ef9011824 Xie, W., & Huang, M. (2020). Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel. Renewable Energy, 158, 474–486. https://doi.org/10.1016/j.renene.2020.05.172 Katiyar, M., Abida, K., & Ali, A. (2021). Candida rugosa lipase immobilization over SBA-15 to prepare solid biocatalyst for cotton seed oil transesterification. Materials Today: Proceedings, 36, 763–768. https://doi.org/10.1016/J.MATPR.2020.06.061 Ma, C., Zhang, Y., Yang, C., Zhang, Y., Zhang, M., & Tang, J. (2022). Cetyl trimethyl ammonium bromide-activated lipase from Aspergillus oryzae immobilized with Cu3(PO4)2⋅3H2O via biomineralization for hydrolysis of olive oil. LWT, 159, 113204. https://doi.org/10.1016/J.LWT.2022.113204 Ozyilmaz, E., Ascioglu, S., & Yilmaz, M. (2021). Preparation of one-pot immobilized lipase with Fe3O4 nanoparticles into metal-organic framework for enantioselective hydrolysis of (R, S)-naproxen methyl ester. ChemCatChem, 13(16), 3687–3694. https://doi.org/10.1002/CCTC.202100481 Ou, J., Yuan, X., Liu, Y., Zhang, P., Xu, W., & Tang, K. (2021). Lipase from pseudomonas cepacia immobilized into ZIF-8 as bio-catalyst for enantioselective hydrolysis and transesterification. Process Biochemistry, 102, 132–140. https://doi.org/10.1016/J.PROCBIO.2020.12.017 Pinto, G. C., Brandt, J. V., Piazza, R. D., dos Santos, C. C., Lucena, G. N., de Paula, A. V., & Marques, R. F. C. (2021). Magnetic graphene oxide as a carrier for lipases immobilization: An approach for hydrolysis of olive oil emulsion. ECS Journal of Solid State Science and Technology, 10(6), 065008. https://doi.org/10.1149/2162-8777/AC054A Jafarian, F., Bordbar, A.-K., Razmjou, A., & Zare, A. (2020). The fabrication of a high performance enzymatic hybrid membrane reactor (EHMR) containing immobilized Candida rugosa lipase (CRL) onto graphene oxide nanosheets-blended polyethersulfone membrane. Journal of Membrane Science, 613, 118435. https://doi.org/10.1016/j.memsci.2020.118435 Shivaprasad, P., Jones, M. D., Frith, P., & Emanuelsson, E. A. C. (2020). Investigating the effect of increasing cloth size and cloth number in a spinning mesh disc reactor (SMDR): A study on the reactor performance. Chemical Engineering and Processing - Process Intensification, 147, 107780. https://doi.org/10.1016/j.cep.2019.107780 Castiglioni, G. Z., Bettio, G., Matte, C. R., Jacques, R. A., Dos Santos Polidoro, A., Rosa, C. A., & Ayub, M. A. Z. (2020). Production of volatile compounds by yeasts using hydrolysed grape seed oil obtained by immobilized lipases in continuous packed-bed reactors.Bioprocess and Biosystems Engineering, 1–12. https://doi.org/10.1007/s00449-020-02334-4 Bavaro, T., Benucci, I., Pedrali, A., Marrubini, G., Esti, M., Terreni, M., & Ubiali, D. (2020). Lipase-mediated hydrolysis of hempseed oil in a packed-bed reactor and in-line purification of PUFA as mono- and diacylglycerols. Food and Bioproducts Processing, 123, 345–353. https://doi.org/10.1016/j.fbp.2020.07.009 Zare, A., Bordbar, A. K., Razmjou, A., & Jafarian, F. (2019). The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane. Journal of Biotechnology, 289, 55–63. https://doi.org/10.1016/j.jbiotec.2018.11.011 Xu, J., Liu, C., Wang, M., Shao, L., Deng, L., Nie, K., & Wang, F. (2017). Rotating packed bed reactor for enzymatic synthesis of biodiesel. Bioresource Technology, 224, 292–297. https://doi.org/10.1016/j.biortech.2016.10.045 Gupta, S. (2016). Comparative study on hydrolysis of oils by lipase immobilized biocatalytic PS membranes using biphasic enzyme membrane reactor. Journal of Environmental Chemical Engineering, 4(2), 1797–1809. https://doi.org/10.1016/j.jece.2016.03.007 Hou, C., Qi, Z., & Zhu, H. (2015). Preparation of core–shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids and Surfaces B: Biointerfaces, 128, 544–551. https://doi.org/10.1016/J.COLSURFB.2015.03.007