Evaluation and implementation of Lie group integration methods for rigid multibody systems

Stefan Holzinger1, Martin Arnold2, Johannes Gerstmayr1
1Department of Mechatronics, University of Innsbruck, Innsbruck, Austria
2Institute of Mathematics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

Tóm tắt

As commonly known, standard time integration of the kinematic equations of rigid bodies modeled with three rotation parameters is infeasible due to singular points. Common workarounds are reparameterization strategies or Euler parameters. Both approaches typically vary in accuracy depending on the choice of rotation parameters. To efficiently compute different kinds of multibody systems, one aims at simulation results and performance that are independent of the type of rotation parameters. As a clear advantage, Lie group integration methods are rotation parameter independent. However, few studies have addressed whether Lie group integration methods are more accurate and efficient compared to conventional formulations based on Euler parameters or Euler angles. In this paper, we close this gap using the $\mathbb{R}^{3}\times SO(3)$ Lie group formulation and several typical rigid multibody systems. It is shown that explicit Lie group integration methods outperform the conventional formulations in terms of accuracy. However, it turns out that the conventional Euler parameter-based formulation is the most accurate one in the case of implicit integration, while the Lie group integration method is computationally the more efficient one. It also turns out that Lie group integration methods can be implemented at almost no extra cost in an existing multibody simulation code if the Lie group method used to describe the configuration of a body is chosen accordingly.

Từ khóa


Tài liệu tham khảo

Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 1–13 (2010). https://doi.org/10.1115/1.4001370 Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings of IDETC/MSNDC 2011, ASME 2011 International Design Engineering Technical Conferences, Washington, USA (2011). https://doi.org/10.1115/DETC2011-48132 Terze, Z., Müller, A., Zlatar, D.: Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations. Multibody Syst. Dyn. 38(3), 201–225 (2016). https://doi.org/10.1007/s11044-016-9518-7 Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach 344 p. Wiley, New York (2001) Singla, P., Mortari, D., Junkins, J.L.: How to avoid singularity when using Euler angles? Adv. Astronaut. Sci. 119(SUPPL), 1409–1426 (2005) Müller, A.: Singularity-free Lie group integration and geometrically consistent evaluation of multibody system models described in terms of standard absolute coordinates. J. Comput. Nonlinear Dyn. 17(5), 1–7 (2022). https://doi.org/10.1115/1.4053368 Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions - a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66(2), 125–161 (1988). https://doi.org/10.1016/0045-7825(88)90073-4 Hante, S., Arnold, M.: RATTLie: a variational Lie group integration scheme for constrained mechanical systems. J. Comput. Appl. Math. 387, 112492 (2021). https://doi.org/10.1016/j.cam.2019.112492 Arnold, M., Cardona, A., Brüls, O.: A Lie algebra approach to Lie group time integration of constrained systems. In: Betsch, P. (ed.) Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, pp. 91–158. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31879-0_3 Holzinger, S., Gerstmayr, J.: Explicit time integration of multibody systems modelled with three rotation parameters. In: Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE2020, August 17-19. ASME, Virtual, Online (2020) Holzinger, S., Gerstmayr, J.: Time integration of rigid bodies modelled with three rotation parameters. Multibody Syst. Dyn. 53, 345–378 (2021). https://doi.org/10.1007/s11044-021-09778-w Arnold, M., Hante, S.: Implementation details of a generalized-a differential- algebraic equation Lie group method. J. Comput. Nonlinear Dyn. 12, 1–8 (2017). https://doi.org/10.1115/1.4033441 Holzinger, S., Schöberl, J., Gerstmayr, J.: The equations of motion for a rigid body using non-redundant unified local velocity coordinates. Multibody Syst. Dyn. 48(3), 283–309 (2020). https://doi.org/10.1007/s11044-019-09700-5 Sonneville, V.: A geometric local frame approach for flexible multibody systems. PhD thesis, University of Liège (2015) Sonneville, V., Brüls, O.: A formulation on the special Euclidean group for dynamic analysis of multibody systems. J. Comput. Nonlinear Dyn. 9(4), 041002 (2014). https://doi.org/10.1115/1.4026569 Müller, A., Terze, Z.: The significance of the configuration space Lie group for the constraint satisfaction in numerical time integration of multibody systems. Mech. Mach. Theory 82, 173–202 (2014) Müller, A., Terze, Z.: Is there an optimal choice of configuration space for Lie group integration schemes applied to constrained MBS? In: Proceedings of the ASME Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE 2013, August 12-15, 2013. ASME, Portland (2013). https://doi.org/10.1115/DETC2013-12151 Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014). https://doi.org/10.1016/j.cma.2013.10.008 Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT Numer. Math. 381(111038), 92–111 (1998). https://doi.org/10.1007/BF02510919 Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Appl. Numer. Math. 29(1), 115–127 (1999). https://doi.org/10.1016/S0168-9274(98)00030-0 Faltinsen, S., Marthinsen, A., Munthe-Kaas, H.Z.: Multistep methods integrating ordinary differential equations on manifolds. Appl. Numer. Math. 39(3–4), 349–365 (2001). https://doi.org/10.1016/S0168-9274(01)00103-9 Wieloch, V., Arnold, M.: BDF integrators for constrained mechanical systems on Lie groups. J. Comput. Appl. Math. 387, 112517 (2021). https://doi.org/10.1016/j.cam.2019.112517 Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48(1), 121–137 (2012). https://doi.org/10.1016/j.mechmachtheory.2011.07.017 Arnold, M., Brüls, O., Cardona, A.: Error analysis of generalized-\(\alpha \) Lie group time integration methods for constrained mechanical systems. Numer. Math. 129, 149–179 (2015) Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371 (1993). https://doi.org/10.1115/1.2900803 Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007). https://doi.org/10.1007/s11044-007-9084-0 Müller, A.: Singularity-free Lie group integration of multibody system models described in absolute coordinates. In: Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 9: 17th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC). Virtual, On (2021). https://doi.org/10.1115/DETC2021-68186 Terze, Z., Müller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody Syst. Dyn. 34(3), 275–305 (2015). https://doi.org/10.1007/s11044-014-9439-2 Celledoni, E., Çokaj, E., Leone, A., Murari, D., Owren, B.: Lie group integrators for mechanical systems. Int. J. Comput. Math. 99(1), 58–88 (2022). https://doi.org/10.1080/00207160.2021.1966772. arXiv:2102.12778 Zhou, P., Ren, H.: Stabilized explicit integrators for local parametrization in multi-rigid-body system dynamics. J. Comput. Nonlinear Dyn. 17(10), 1–11 (2022). https://doi.org/10.1115/1.4054801 Terze, Z., Müller, A., Zlatar, D.: DAE index 1 formulation for multibody system dynamics in Lie-group setting. In: Proceedings of the 2nd Joint International Conference on Multibody System Dynamics, May 29-June 1, Stuttgart, Germany (2012). 2012 Park, J., Chung, W.K.: Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Trans. Robot. 21(5), 850–863 (2005). https://doi.org/10.1109/TRO.2005.852253 Condurache, D., Ciureanu, I.A.: Baker-Campbell-Hausdorff-Dynkin formula for the Lie algebra of rigid body displacements. Mathematics 8(7) (2020). https://doi.org/10.3390/math8071185 Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. 644 p. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-30666-8 Bogacki, P., Shampine, L.F.: A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989). https://doi.org/10.1016/0893-9659(89)90079-7 Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems 528 p. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-78862-1 Gerstmayr, J.: Exudyn – a C++ based Python package for flexible multibody systems. In: The 6th Joint International Conference on Multibody System Dynamics and the 10th Asian Conference on Multibody System Dynamics, New Delhi, India (2022) Bottasso, C.L., Dopico, D.D.: On the optimal scaling of index three DAEs in multibody dynamics. In: Proc. of the European Conference on Computational Mechanics (ECCOMAS-ECCM), Lisbon, Portugal (2006) Arnold, M., Brüls, O., Cardona, A.: Convergence analysis of generalized-\(\alpha \) Lie group integrators for constrained systems. In: Proceedings of Multibody Dynamics ECCOMAS Conference (2011) Shampine, L.F.: Evaluation of implicit formulas for the solution of ODEs. BIT Numer. Math. 19(4), 495–502 (1979). https://doi.org/10.1007/BF01931266 Hante, S.: Geometric integration of a constrained cosserat beam model. PhD thesis, Martin Luther University Halle-Wittenberg (2022). https://doi.org/10.25673/91397 Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems 370 p. Prentice Hall, New York (1988) Gerstmayr, J.: Exudyn – a C++-based Python package for flexible multibody systems. Multibody Syst. Dyn. (2023). https://doi.org/10.1007/s11044-023-09937-1 IFToMM Technical Committee for Multibody Dynamics: Library of Computational Benchmark Problems (2015) Masoudi, R.: Spatial rigid slider-Crank mechanism. Taken from “Library of Computational Benchmark Problems” (2022). https://www.iftomm-multibody.org/benchmark/problem/Spatial_rigid_slider-Crank_mechanism/ Corke, P.I.: Robotics, Vision and Control, 2nd edn. 570 p. Springer, Cham (2011). https://doi.org/10.1007/978-3-319-54413-7 Kim, H.Y., Streit, D.A.: Configuration dependent stiffness of the PUMA 560 manipulator: analytical and experimental results. Mech. Mach. Theory 30(8), 1269–1277 (1995). https://doi.org/10.1016/0094-114X(95)00017-S Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics 2nd edn. 2228 p. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1 Müller, A.: Coordinate mappings for rigid body motions. J. Comput. Nonlinear Dyn. 12(2) (2017). https://doi.org/10.1115/1.4034730