Evaluating sex hormones and cytokine profile in Egyptian females with relapsing-remitting multiple sclerosis

Forayssa M. Talaat1, Noha T. Abokrysha1, Dalia M. Labib1, Engy El Khateeb2, Ghada Hatem Abd El Aziz1
1Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
2Clinical Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt

Tóm tắt

Sexual dimorphism shown in multiple sclerosis suggests an interaction between immune system and sex hormones. The objective of this study is to determine the hormonal profile and serum cytokine levels in Egyptian female patients with relapsing-remitting MS (RRMS) compared with healthy controls and their associations with disease disability. This study was conducted on 40 female patients with RRMS and 20 age-matched controls subjected to measurements of the hormonal profile (estrogen, testosterone) and cytokine levels (interleukin 10 and 4 and tumor necrosis factor alpha) and disability assessment using Expanded Disability Status Scale (EDSS). Levels of estrogen, testosterone, interleukin 10 and 4 (IL-10 and IL-4), and tumor necrosis factor alpha (TNF-α) were higher in patients compared to control with no statistically significant difference. Estrogen levels were positively correlated with interleukin 10 and interleukin 4 levels and negatively correlated with tumor necrosis factor alpha (TNF-α), but there was no statistically significant correlation between hormonal profile or cytokine profile (IL-10, IL-4, and TNF-α) and EDSS. It is suggested that estrogen has an anti-inflammatory effect on cytokine milieu; therefore, it can be tried as a treatment option in multiple sclerosis.

Tài liệu tham khảo

Kawachi I, Lassmann H. Neurodegeneration in multiple sclerosis and neuromyelitisoptica. J NeurolNeurosurg Psychiatry. 2017;88:137–45. Ngo ST, Steyna FJ, McCombeb PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014;35:347–69. Kelly MJ, Ronnekleiv OK, Ibrahim N, Lagrange AH, Wagner EJ. Estrogen modulation of K(+) channel activity in hypothalamic neurons involved in the control of the reproductive axis. Steroids. 2002;67(6):447–56. McClain MA, Gatson NN, Powell ND, Papenfuss TL, Gienapp IE, Song F, et al. Pregnancy suppresses experimental autoimmune encephalomyelitis through immunoregulatory cytokine production. J Immunol. 2007;179:8146–52. Tomassini V, Onesti E, Mainero C, Giugni E, Paolillo A, Salvetti M, et al. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J NeurolNeurosurg Psychiatry. 2005;76:272–5. Alonso A, Jick SS, Olek MJ, Ascherio A, Jick H, Hernán MA. Recent use of oral contraceptives and the risk of multiple sclerosis. Arch Neurol. 2005;62(9):1362–5. Zakrzewska-Pniewska B, Goebiowski M, Zajda M, Szeszkowski W, Podlecka-Piętowska A, Nojszewska M. Sex hormone patterns in women with multiple sclerosis as related to disease activity – a pilot study. NeurolNeurochir Pol. 2011;45(6):536–42. Shahdaeizadeh S, Edalatmanesh MA, Moghadasi M. Sex hormone (FSH, estrogen and testosterone) changes in follicular and luteal phases and sexual dysfunction in women with multiple sclerosis. Par J Med Sci. 2015;12(4):23–30. Trenova AG, Slavov GS, Manova MG, Kostadinova II, Vasileva TV. Female sex hormones and cytokine secretion in women with multiple sclerosis. Neurol Res. 2013;35(1):95–9. Foroughipour A, Norbakhsh V, Najafabadi SH, Meamar R. Evaluating sex hormone levels in reproductive age women with multiple sclerosis and their relationship with disease severity. J Res Med Sci. 2012;17(9):882–5. Cherrier MM, Matsumoto AM, Amory JK, Ahmed S, Bremner W, Peskind ER, et al. The role of aromatization in testosterone supplementation: effects on cognition in older men. Neurology. 2005;64:290–6. Garcia-Estrada J, Del Rio JA, Luquin S, Soriano E, Garcia-Segura LM. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res. 1993;628:271–8. Bovolenta P, Wandosell F, Nieto-SampedroM. CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Prog Brain Res. 1992;94:367–79. Brandão CO, Ruocco HH, Farias AD, Oliveira C, Hallal-Longo DE, Mirandola SR, et al. Cytokines and intrathecal IgG synthesis in multiple sclerosis patients during clinical remission. ArqNeuropsiquiatr. 2005;63(4):914–9. Musabak U DS, Genç G, Ilikci RS, Odabasi Z. Serum adiponectin, TNF- α, IL-12p70, and IL-13 levels in multiple sclerosis and the effects of different therapy regimens. Neuroimmunomodulation. 2011;18:57–66. Taşdemir N, Karaca EE, Ece A, Yücel Y, Dikici S, Taşdemir MS. Multiple sclerosis: relationships between cytokines, MRI lesion burden, visual evoked potentials and disability scores. Eur J Gen Med. 2010;7(2):167–73. Kallaur AP, Oliveira SR, ColadoSimão AN, Delicato de Almeida ER, Kaminami Morimoto H, Lopes J, et al. Cytokine profile in relapsing-remitting multiple sclerosis patients and the association between progression and activity of the disease. Mol Med Rep. 2013;7(3):1010–20. Sosvorova L, Kanceva R, Vcelak J, Kancheva L, Mohapl M, Starka L, et al. The comparison of selected cerebrospinal fluid and serum cytokine levels in patients with multiple sclerosis and normal pressure hydrocephalus. Neuroendocrinol Lett. 2015;36(6):564–71. Pasquali L, Lucchesi C, Pecori C, Metelli MR, Pellegrini S, Iudice A, et al. A clinical and laboratory study evaluating the profile of cytokine levels in relapsing remitting and secondary progressive multiple sclerosis. J Neuroimmunol. 2015;278:53–9. Javadian A, Salehi E, Bidad K, Sahraian MA, Izad M. Effect of estrogen on Th1, Th2 and Th17 cytokines production by proteolipid protein and PHA activated peripheral blood mononuclear cells isolated from multiple sclerosis patients. Arch Med Res. 2014;45(2):177–82. Soldan SS, Alvarez Retuerto AI, Sicotte NL, Voskuhl RR. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol. 2003;171:6267–74. Spence RD, Wisdom AJ, Cao Y, Hill HM, Mongerson CR, Stapornkul B, et al. Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERα signaling on astrocytes but not through ERβ signaling on astrocytes or neurons. J Neurosci. 2013;33(26):10924–33. Ito A, Bebo BF Jr, Matejuk A, Zamora A, Silverman M, Fyfe Johnson A, et al. Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J Immunol. 2001;1:542–52. Gilmore W, Weiner LP, Correale J. Effect of estradiol on cytokine secretion by proteolipid protein-specific T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol. 1997;158:446–51. Khan D, Ahmed SA. The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol. 2016;6:635. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521–74. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8:737–44.