Ethylene and Auxin Control the Arabidopsis Response to Decreased Light Intensity

Oxford University Press (OUP) - Tập 133 Số 2 - Trang 517-527 - 2003
Filip Vandenbussche1,2, Wim H. Vriezen1,2, Jan Smalle1,2, Lucas J. J. Laarhoven1,2, Frans J. M. Harren1,2, Dominique Van Der Straeten1,2
1Department of Molecular Genetics, University of Ghent, Belgium (F.V., W.H.V., J.S., D.V.D.S.); and Department of Molecular and Laser Physics, University of Nijmegen, The Netherlands (L.J.J.L., F.J.M.H.)
2Department of Molecular and Laser Physics, University of Nijmegen, The Netherlands (L.J.J.L., F.J.M.H.)

Tóm tắt

AbstractMorphological responses of plants to shading have long been studied as a function of light quality, in particular the ratio of red to far red light that affects phytochrome activity. However, changes in light quantity are also expected to be important for the shading response because plants have to adapt to the reduction in overall energy input. Here, we present data on the involvement of auxin and ethylene in the response to low light intensities. Decreased light intensities coincided with increased ethylene production in Arabidopsis rosettes. This response was rapid because the plants reacted within minutes. In addition, ethylene- and auxin-insensitive mutants are impaired in their reaction to shading, which is reflected by a defect in leaf elevation and an aberrant leaf biomass allocation. On the molecular level, several auxin-inducible genes are up-regulated in wild-type Arabidopsis in response to a reduction in light intensity, including the primary auxin response gene IAA3 and a protein with similarity to AUX22 and the 1-aminocyclopropane-1-carboxylic acid synthase genes ACS6, ACS8, and ACS9 that are involved in ethylene biosynthesis. Taken together, the data show that ethylene and auxin signaling are required for the response to low light intensities.

Từ khóa


Tài liệu tham khảo

Abel S, Nguyen MD, Chow W, Theologis A (1995) ACS4, a primary indole acetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem  270  :  26020–26020

Ainley WM, Walker JC, Nagao RT, Key JL (1988) Sequence and characterization of 2 auxin-regulated genes from soybean. J Biol Chem  63  :  10658–10666

Al Shehbaz IA, O'Kane SL (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0001, http://www.aspb.org/publications/arabidopsis

Bassi PK, Spencer MS (1983) Does light inhibit ethylene production in leaves? Plant Physiol  73  :  758–760

Bijnen FGC, Reuss J, Harren FJM (1996) Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Rev Sci Instrum  67  :  2914–2923

Blackman GE, Wilson GL (1951) Physiological and ecological studies in the analysis of plant environment: VII. An analysis of the differential effects of light intensity on the net assimilation rate, leaf-area ratio, and relative growth rate of different species. Ann Bot  15  :  373–408

Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F,  Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G et al. (2002) Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA  99  :  14825–14830

Brock TG, Ghosheh NS, Kaufman PB (1994) Differential sensitivity to indole-3-acetic acid and gibberellic acid following gravistimulation of the leaf sheath pulvini of oat and barley. Plant Physiol Biochem  32  :  487–491

Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell  15  :  545–559

Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene response gene ETR1: Similarity of product to two-component regulators. Science  262  :  539–544

Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr  64  :  149–175

Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000) The hormonal regulation of axillary bud growth in Arabidopsis. Plant J  24  :  159–169

Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by 5 genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol  25  :  413–427

Clua A, Bottini R, Brocchi GN, Bogino J, Luna V, Montaldi ER (1996) Growth habit of Lotus tenuis shoots and the influence of photosynthetic photon flux density, sucrose and endogenous levels of gibberellins A-1 and A-3. Physiol Plant  98  :  381–388

Colon-Carmona A, Chen DL, Yeh KC, Abel S (2000) AUX/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol  124  :  1728–1738

Corbineau F, Rudnicki RM, Goszczynska DM, Come D (1995) The effect of light quality on ethylene production in leaves of oat seedlings (Avena sativa L.). Environ Exp Bot  35: 227–233

Cox MCH, Millenaar FF, de Jong van Berkel YEM, Peeters AJM, Voesenek  LACJ (2003) Plant movement: submergence-induced petiole elongation in Rumex palustris depends on hyponastic growth. Plant Physiol  132  :  282–291

Dedonder A, Rethy R, Fredericq H, Van Montagu M, Krebbers E (1993) Arabidopsis RBCS genes are differentially regulated by light. Plant Physiol  101  :  801–808

De Laat AMM, Brandenburg DCC, van Loon LC (1981) The modulation of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene by light. Planta  153  :  193–200

Devlin PF, Halliday KJ, Harberd NP, Whitelam GC (1996) The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Plant J  10  :  1127–1134

Finlayson SA, Lee IJ, Morgan PW (1998) Phytochrome B and the regulation of circadian ethylene production in sorghum. Plant Physiol  116  :  17–25

Finlayson SA, Lee IJ, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in sorghum: the role of phytochrome B and simulated shading. Plant Physiol  119  :  1083–1089

Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature  415  :  806–809

Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell  2  :  513–523

Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol  124  :  1437–1448

Hangarter RP (1997) Gravity, light and plant form. Plant Cell Environ  20  :  796–800

Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki  MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell  12  :  757–770

Herbert TJ (1983) The influence of axial rotation upon interception of direct solar radiation by plant leaves. J Theor Biol  105  :  603–618

Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S,  Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell  97  :  383–393

Holmes MG (1983) Perception of shade. Philos Trans R Soc Lond B  303  :  503–521

Kao CH, Yang SF (1982) Light inhibition of the conversion of 1-aminocyclopropane carboxylic acid to ethylene in leaves is mediated through carbon dioxide. Planta  155  :  261–266

Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell  72  :  427–441

Kim BC, Soh MS, Kang BJ, Furuya M, Nam HG (1996) Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J  9  :  441–456

Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell  85  :  183–194

Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev Plant Biol  53: 377–398

Lippincott BB, Lippincott JA (1971) Auxin-induced hyponasty of the leaf blade of Phaseolus vulgaris. Am J Bot  58  :  817–826

Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev  12  :  2175–2187

Koornneef M, Rolff E, Spruit CJP (1980) Genetic-control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L) Heynh. Z Pflanzenphysiol  100  :  147–160

Madlung A, Behringer FJ, Lomax TL (1999) Ethylene plays multiple non-primary roles in modulating the gravitropic response in tomato. Plant Physiol  120  :  897–906

Maliakal SK, McDonnell K, Dudley SA, Schmitt J (1999) Effects of red to far-red ratio and plant density on biomass allocation and gas exchange in Impatiens capensis. Int J Plant Sci  160  :  723–733

McClung CR (1997) Regulation of catalases in Arabidopsis. Free Radic Biol Med  23  :  489–496

McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology  80  :  2581–2593

Müller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Darry  G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J  17  :  6903–6911

Pigliucci M, Schmitt J (1999) Genes affecting phenotypic plasticity in Arabidopsis: pleiotropic effects and reproductive fitness of photomorphogenic mutants. Evol Biol  12  :  551–562

Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell  5  :  147–157

Robson PRH, Whitelam GC, Smith H (1993) Selected Components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome. Plant Physiol  102  :  1179–1184

Rodrigues-Pousada RA, De Rycke R, Dedonder A, Van Caeneghem W,  Engler G, Van Montagu M, Van Der Straeten D (1993) The Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene 1 is expressed during early development. Plant Cell  5  :  897–911

Rudnicki RM, Fjeld T, Moe R (1993) Effect of light quality on ethylene formation in leaf and petal disks of Begonia × hiemalis-Fotsch cv Schwabenland red. Plant Growth Regul  13  :  281–286

Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, Koshiba  T (2002) The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J  32  :  1011–1022

Smalle J, Haegman M, Kurepa J, Van Montagu M, Van Der Straeten D (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA  94  :  2756–2761

Smith H (1992) The ecological functions of the phytochrome family: clues to a transgenic programme of crop improvement. Photochem Photobiol  56  :  815–822

Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ  20  :  840–844

Somers DE, Sharrock RA, Tepperman JM, Quail PH (1991) The Hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome-B. Plant Cell  3  :  1263–1274

Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T,  Morelli G, Ruberti I (1999) Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development  126  :  4235–4245

Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol  49  :  411–426

Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SH Y2/IAA3 gene. Development  126  :  711–721

Tian Q, Reed JW (2001) Molecular links between light and auxin signaling pathways. J Plant Growth Regul  20  :  274–280

Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell  14  :  301–319

Ursin VM, Bradford KJ (1989) Auxin and ethylene regulation of petiole epinasty in 2 developmental mutants of tomato, diageotropica and epinastic. Plant Physiol  90  :  1341–1346

Vandenbussche F, Smalle J, Le J, Madeira-Saibo NJ, De Paepe A, Chaerle  L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM et al. (2003) The Arabidopsis thaliana mutant alh1 illustrates a cross-talk between ethylene and auxin. Plant Physiol  131: 1228–1238

Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA  95  :  4766–4771

Watahiki M-K, Yamamoto K-T (1997) The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol  115  :  419–426

Wheeler RM, White RG, Salisbury FB (1986) Gravitropsim in higher plant shoots: IV. Further studies on participation of ethylene Plant Physiol  82  :  534–542

Wullschleger SD, Hanson PJ, Gunderson CA (1992) Assessing the influence of exogenous ethylene on electron-transport and fluorescence quenching in leaves of Glycine max. Environ Exp Bot  32  :  449–455

Yamamoto KT, Mori H, Imaseki H (1992) CDNA cloning of indole-3-acetic acid-regulated genes: AUX22 and SAUR from mung bean (Vigna radiata) hypocotyl tissue. Plant Cell Physiol  33  :  93–97

Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol  35  :  155–189

Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT (1999) Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol Biol  41  :  443–454

Zhang N, Kallis RP, Ewy RG, Portis AR (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA  99  :  3330–3334