Ethosuximide: From Bench to Bedside

Wiley - Tập 13 Số 2 - Trang 224-239 - 2007
M. Zafer Gören1, Filiz Onat
1Department of Pharmacology and Clinical Pharmacology, School of Medicine, Epilepsy Research Center, Marmara University, Haydarpaşa, Istanbul, Turkey. [email protected]

Tóm tắt

ABSTRACTEthosuximide, 2‐ethyl‐2‐methylsuccinimide, has been used extensively for “petit mal” seizures and it is a valuable agent in studies of absence epilepsy. In the treatment of epilepsy, ethosuximide has a narrow therapeutic profile. It is the drug of choice in the monotherapy or combination therapy of children with generalized absence (petit mal) epilepsy. Commonly observed side effects of ethosuximide are dose dependent and involve the gastrointestinal tract and central nervous system. Ethosuximide has been associated with a wide variety of idiosyncratic reactions and with hematopoietic adverse effects. Typical absence seizures are generated as a result of complex interactions between the thalamus and the cerebral cortex. This thalamocortical circuitry is under the control of several specific inhibitory and excitatory systems arising from the forebrain and brainstem. Corticothalamic rhythms are believed to be involved in the generation of spike‐and‐wave discharges that are the characteristic electroencephalographic signs of absence seizures. The spontaneous pacemaker oscillatory activity of thalamocortical circuitry involves low threshold T‐type Ca2+ currents in the thalamus, and ethosuximide is presumed to reduce these low threshold T‐type Ca2+ currents in thalamic neurons. Ethosuximide also decreases the persistent Na+ and Ca2+‐activated K+ currents in thalamic and layer V cortical pyramidal neurons. In addition, there is evidence that in a genetic absence epilepsy rat model ethosuximide reduces cortical γ‐aminobutyric acid (GABA) levels. Also, elevated glutamate levels in the primary motor cortex of rats with absence epilepsy (but not in normal animals) are reduced by ethosuximide.

Từ khóa


Tài liệu tham khảo

Avanzini G, 1992, Role of the thalamic reticular nucleus in the generation of rhythmic thalamo‐cortical activities subserving spikes and waves, J Neural Transm, 35, 85

10.1016/0028-3908(80)90038-6

10.1111/j.1528-1157.1980.tb04321.x

10.1016/0014-4886(82)90112-1

10.3109/00498259309059384

10.1016/j.ejphar.2005.08.017

10.2165/00003088-198207020-00006

10.1212/WNL.37.6.993

Berkovic SF, 2005, Treatment with anti‐epileptic drugs, Aust Fam Physician, 34, 1017

10.1016/j.yebeh.2004.08.021

10.1523/JNEUROSCI.20-13-05153.2000

10.1177/009127006900900607

Buchanan RA, 1973, The absorption and excretion of ethosuximide, Int J Clin Pharmacol, 7, 213

Bourgeois BFD, 1988, Combination of valproate and ethosuximide: Antiepileptic and neurotoxic interaction, J Pharmacol Exp Ther, 247, 1128

10.1007/s007020070025

10.1016/S1059-1311(97)80001-5

10.1212/WNL.25.6.515

Browne TR, 1983, Epilepsy: Diagnosis and management, 215

10.1177/088307389901400609

10.1111/j.1528-1157.1989.tb05316.x

10.1002/ana.410250610

10.1046/j.1535-7597.2002.00024.x

10.1038/nrn811

10.1016/S1059-1311(95)80003-4

10.1016/0006-2952(92)90336-H

10.1002/1520-6866(1990)2:1<61::AID-TCM1770020107>3.0.CO;2-O

10.1111/j.1528-1157.2000.tb00245.x

10.1016/j.pain.2004.01.029

Fohlmeister JF, 1984, Excitable channel currents and gating times in the presence of anticonvulsants ethosuximide and valproate, J Pharmacol Exp Ther, 230, 75

10.1046/j.1365-2125.1996.03601.x

10.1111/j.1528-1167.2006.00585.x

10.1111/j.1528-1157.2000.tb02943.x

Gilbert J, 1974, The effects of the anticonvulsant ethosuximide on adenosine triphosphatase activities of some subcellular fractions prepared from rat cerebral cortex, Br J Pharmacol, 50, 452

Gilbert J, 1974, The effects of the anticonvulsant ethosuximide on adenosine triphosphatase activities of synaptosomes prapared from rat cerebral cortex, Br J Pharmacol, 52, 139

10.1007/s00221-002-1183-9

10.1007/s00221-006-0716-z

10.1016/0166-2236(88)90166-X

10.1124/mol.60.5.1121

Gören MZ, 1997, Extracellular GABA levels are increased in brain regions associated with the generation of absence seizures, Br J Pharmacol, 122, 83

Groos RA, 1997, Voltage‐dependent Ca2+ channels as targets for convulsant alkyl‐substituted thiobutyrolactones, J Pharmacol Exp Ther, 280, 686

10.1001/archneur.1993.00540060034013

Hansen SE, 1974, Absorbtion and elimination of Zarontin, Dan Med Bull, 11, 54

10.1523/JNEUROSCI.14-09-05485.1994

10.1016/S0387-7604(03)00060-3

10.1016/S0304-3940(00)01702-X

10.1111/j.1528-1157.1978.tb05033.x

10.1111/j.1365-2125.1984.tb02528.x

10.1523/JNEUROSCI.18-13-04842.1998

Lin‐Mitchell E, 1986, Effects of ethosuximide and in combination with gamma‐aminobutyric acid receptor antagonists on brain gamma‐aminobutyric acid concentration, anticonvulsant activity, and neurotoxicity in mice, J Pharmacol Exp Ther, 237, 486

10.1016/0006-8993(91)91262-Y

10.1016/0306-4522(92)90340-8

10.1016/0920-1211(91)90075-Q

10.1016/0920-1211(91)90062-K

10.1111/j.1528-1157.1993.tb05918.x

10.1016/j.tips.2003.08.006

10.1111/j.1528-1167.2006.00443.x

Mares P, 1994, Is the site of action of ethosuximide in the hindbrain?, Physiol Res, 43, 51

10.1016/S0024-3205(98)00266-5

Marbury TC, 1981, Hemodialysis clearance of ethosuximide in patients with chronic renal disease, Am J Hosp Pharm, 38, 1757

Marescaux C, 1992, Genetic absence epilepsy in rats from Strasbourg: A review, J Neural Transm Suppl, 35, 37

10.1136/jnnp.2005.064923

10.1016/S0014-2999(01)00812-3

10.1002/ana.410070613

10.1111/j.1528-1157.1995.tb05995.x

10.2174/187152706779025535

McLean MJ, 1986, Na+valproate, but not ethosuximide, produces use‐ and voltage‐dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture, J Pharmacol Exp Ther, 237, 1001

10.1523/JNEUROSCI.22-04-01480.2002

10.1002/bdd.266

10.1007/BF03190184

10.1097/00004691-198607000-00001

10.1038/316440a0

10.1055/s-2007-973530

Panayiotopoulos C, 1997, Epilepsy: A comprehensive textbook, 2327

10.1111/j.1528-1157.1977.tb05001.x

10.1111/j.1528-1167.2005.00326.x

Paule MG, 1986, Behavioral toxicity of chronic ethosuximide and sodium valproate treatment in the epileptic baboon, Papio papio, J Pharmacol Exp Ther, 238, 32

10.1111/j.1528-1157.1976.tb04446.x

10.1046/j.1528-1157.2001.042suppl.3031.x

10.1097/00007691-198104000-00001

10.1111/j.1528-1157.1984.tb04180.x

10.1016/j.seizure.2004.12.003

10.1046/j.1471-4159.1995.65041674.x

10.1016/S0920-1211(03)00060-3

10.1016/0163-7258(95)02014-4

10.1001/archneur.1983.04050120047006

10.1016/j.neucli.2006.12.001

10.1212/WNL.32.2.157

10.1152/jn.1993.69.5.1596

Sherwin AL, 2002, Antiepileptic drugs, 652

10.2165/00002018-200022060-00005

10.1016/j.neuropharm.2005.01.013

10.1016/j.heares.2006.12.011

10.1007/BF01243423

10.1002/ana.410290404

10.1016/j.brainres.2005.06.024

10.1073/pnas.071051998

Swiader MJ, 2006, Influence of cimetidine on the anticonvulsant activity of conventional antiepileptic drugs against pentetrazole‐induced seizures in mice, Pharmacol Rep, 58, 131

10.1136/adc.50.8.658

10.1254/jphs.FP0050691

10.1038/sj.bjp.0705434

10.1523/JNEUROSCI.15-04-03110.1995

10.1016/0014-4886(87)90174-9

10.1016/0304-3940(84)90226-X

10.1097/00007691-199009000-00018

10.1016/S0014-2999(00)00714-7

10.1212/WNL.33.9.1227

10.1016/j.eplepsyres.2004.04.003

10.2165/00002018-199615060-00003

10.1016/S0920-1211(97)00080-6

10.1001/archpedi.1966.02090040099011

10.1111/j.1528-1157.1999.tb00913.x

10.1046/j.1528-1157.44.s7.10.x

10.1124/jpet.104.069146

10.1124/jpet.106.105999

10.1007/BF00313944

10.1016/0920-1211(95)00079-8

10.1212/WNL.8.10.769