Những mối quan ngại về đạo đức xung quanh quyền riêng tư và an ninh dữ liệu trong giám sát sức khỏe bằng trí tuệ nhân tạo cho bệnh Parkinson: những hiểu biết từ bệnh nhân, thành viên gia đình và các chuyên gia y tế

AI & SOCIETY - Trang 1-11 - 2024
Itai Bavli1,2, Anita Ho1,3, Ravneet Mahal4, Martin J. McKeown4
1The Maurice Young Centre for Applied Ethics, School of Population and Public Health, The University of British Columbia, Vancouver, Canada
2School of Public Health, Boston University, Boston, USA
3Bioethics Program, University of California, San Francisco, USA
4Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, Canada

Tóm tắt

Các công nghệ trí tuệ nhân tạo (AI) trong y học đang dần thay đổi nghiên cứu sinh học và chăm sóc bệnh nhân. Những kỳ vọng cao và lời hứa từ các ứng dụng AI mới nhằm tác động tích cực tới xã hội đặt ra những câu hỏi đạo đức mới cho bệnh nhân và người chăm sóc khi sử dụng các công nghệ này. Dựa trên phân tích nội dung định tính từ các cuộc phỏng vấn nửa cấu trúc và nhóm tập trung với các chuyên gia y tế (HCPs), bệnh nhân và thành viên gia đình của bệnh nhân mắc bệnh Parkinson (PD), nghiên cứu hiện tại khám phá quan điểm của người tham gia về các lợi ích so sánh và vấn đề khi sử dụng giám sát sức khỏe bằng thị giác máy tính dự đoán của con người so với AI, cũng như những mối quan ngại đạo đức của người tham gia đối với các công nghệ này. Người tham gia giả định rằng giám sát bằng AI sẽ nâng cao khả năng chia sẻ thông tin và điều trị, nhưng họ bày tỏ lo ngại về quyền sở hữu dữ liệu, bảo vệ dữ liệu, thương mại hóa dữ liệu bệnh nhân và quyền riêng tư tại nhà. Họ nhấn mạnh rằng các vấn đề về quyền riêng tư tại nhà và an ninh dữ liệu thường liên kết với nhau và cần được nghiên cứu cùng nhau. Những phát hiện này có thể giúp các nhà công nghệ, HCPs và các nhà hoạch định chính sách xác định cách thức kết hợp những lo ngại đan xen nhưng khác biệt của các bên liên quan vào việc phát triển và triển khai các công cụ giám sát PD bằng AI.

Từ khóa


Tài liệu tham khảo

Akkus Z et al (2021) Artificial intelligence (AI)-empowered echocardiography interpretation: a state-of-the-art review. J Clin Med 10(7):1391 Armstrong MJ, Okun MS (2020) Diagnosis and treatment of parkinson disease: a review. JAMA 323(6):548–560 Ayers JW et al (2023) Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med 183(6):589–596 Belić M et al (2019) Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—a review. Clin Neurol Neurosurg 184:105442 Bell E et al (2010) Hope and patients’ expectations in deep brain stimulation: healthcare providers’ perspectives and approaches. J Clin Ethics 21(2):112–124 Bian C, Ye B, Hoonakker A, Mihailidis A (2021) Attitudes and perspectives of older adults on technologies for assessing frailty in home settings: a focus group study. BMC Geriatr. https://doi.org/10.1186/s12877-021-02252-4 Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol Suppl 247(2):3–10 CALYPTIX Security (2018) Top 5 causes of data breaches in healthcare. https://www.calyptix.com/research/top-5-causes-of-data-breaches-in-healthcare/. Accessed 27 Jun 2022 Challen R et al (2019) Artificial intelligence, bias and clinical safety. BMJ Qual Saf 28(3):231–237 Cho MK (2021) Rising to the challenge of bias in health care AI. Nat Med 27(12):2079–2081 Corbin J, Strauss A (2008) Basics of qualitative research: techniques and procedures for developing grounded theory, 3rd edn. Sage publications, Thousand Oaks Cutler DM (2023) What artificial intelligence means for health care. JAMA Health Forum 4(7):e232652 Danks D, London AJ (2017) Algorithmic bias in autonomous systems. In: IJCAI international joint conference on artificial intelligence, pp 1–7 Denton SW, Pauwels E, He Y, Johnson WG (2018) There’s nowhere to hide: artificial intelligence and privacy in the fourth industrial revolution. Wilson Center Policy Report (March), pp 10–11 Diprose W, Buist N (2016) Artificial intelligence in medicine: humans need not apply? N Z Med J 129(1434):73–76 Dishman E, Carrillo MC (2007) Perspective on everyday technologies for Alzheimer’s care: research findings, directions, and challenges. Alzheimer’s Dement 3(3):227–234 Eijkholt M (2020) Medicine’s collision with false hope: the false hope harms (FHH) argument. Bioethics 34(7):703–711 Elul Y et al (2021) Meeting the unmet needs of clinicians from AI systems showcased for cardiology with deep-learning-based ECG analysis. Proc Natl Acad Sci USA 118(24):1–12 Gerke S, Minssen T, Cohen G (2020) Ethical and legal challenges of artificial intelligence-driven healthcare. In: Bohr A, Memarzadeh K (eds) Artificial intelligence in healthcare. Elsevier, London, pp 295–336 Graham SS (2022) The doctor and the algorithm: promise, peril, and the future of health AI. Oxford University Press, New York Harvey JM et al (2018) Desperately seeking a cure: treatment seeking and appraisal in irritable bowel syndrome. Br J Health Psychol 23(3):561–579 Hashimoto DA, Rosman G, Rus D, Meireles OR (2018) Artificial intelligence in surgery: promises and perils. Ann Surg 268(1):70–76 Ho A (2023) Live like nobody is watching: relational autonomy in the age of artificial intelligence. Oxford University Press, New York Ho A, Bavli I, Mahal R, MJ McKeown (2023) Multi-level ethical considerations of artificial intelligence health monitoring for people living with Parkinson’s Disease. AJOB Empir Bioeth. https://doi.org/10.1080/23294515.2023.2274582 House of Lords (2018) AI in the UK: ready, willing and able? https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf. Accessed 27 Jun 2022 Jutzi TB et al (2020) Artificial intelligence in skin cancer diagnostics: the patients’ perspective. Front Med 7(233):1–9 Kantarjian H, Yu PP (2015) Artificial intelligence, big data, and cancer. JAMA Oncol 1(5):573–574 Klugman CM, Dunn LB, Schwartz J, Glenn Cohen I (2018) The ethics of smart pills and self-acting devices: autonomy, truth-telling, and trust at the dawn of digital medicine. Am J Bioeth 18(9):38–47 Kooli C, Al Muftah HAl (2022) Artificial intelligence in healthcare: a comprehensive review of its ethical concerns. Technol Sustain 1:121–131 Landi H (2022) Healthcare data breaches hit all-time high in 2021, impacting 45M people. Health Tech. https://www.fiercehealthcare.com/health-tech/healthcare-data-breaches-hit-all-time-high-2021-impacting-45m-people. Accessed 27 Jun 2022 Lee P, Bubeck S, Petro J (2023) Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med 388(13):1233–1239 Lim LJ, Tison GH, Delling FN (2020) Artificial intelligence in cardiovascular imaging. Methodist Debakey Cardiovasc J 16(2):138–145 London AJ (2018) Groundhog day for medical artificial intelligence. Hastings Center Rep. https://doi.org/10.1002/hast.842 London AJ (2019) Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Center Rep 49(1):15–21 London AJ (2022) Artificial intelligence in medicine: overcoming or recapitulating structural challenges to improving patient care? Cell Rep Med 3(5):100622 Luxton DD (2014) Recommendations for the ethical use and design of artificial intelligent care providers. Artif Intell Med 62(1):1–10 Luxton DD, Anderson SL, Anderson M (2016) Ethical issues and artificial intelligence technologies in behavioral and mental health care. In: Luxton DD (ed) Artificial intelligence in behavioral and mental health care. Acadamic press, London, pp 255–276 Markowetz A et al (2014) Psycho-informatics: big data shaping modern psychometrics. Med Hypotheses 82(4):405–411 Martinez-Martin N, Kreitmair K (2018) Ethical issues for direct-to-consumer digital psychotherapy apps: addressing accountability, data protection, and consent. JMIR Ment Health 5(2):e9423 McCradden MD, Stephenson EA, Anderson JA (2020) Clinical research underlies ethical integration of healthcare artificial intelligence. Nat Med 26(9):1325–1326 Mechanic D, Tanner J (2007) Vulnerable people, groups, and populations: societal view. Health Aff 26(5):1220–1230 Miles MB, Huberman MA, Saldaña J (2014) 28 Zeitschrift fur Personalforschung. In: Qualitative data analysis. A methods sourcebook. Sage publications, Thousand Oaks Mittelstadt BD, Floridi L (2016) The ethics of big data: current and foreseeable issues in biomedical contexts. Law Govern Technol Ser 29:445–480 Murphy K et al (2021) Artificial intelligence for good health: a scoping review of the ethics literature. BMC Med Ethics 22(1):1–17 Nash DM et al (2023) Perceptions of artificial intelligence use in primary care: a qualitative study with providers and staff of ontario community health centres. J Am Board Fam Med JABFM 36(2):221–228 Nichol AA, Batten JN et al (2021a) A typology of existing machine learning-based predictive analytic tools focused on reducing costs and improving quality in health care: systematic search and content analysis. J Med Internet Res 23(6):e26391 Nichol AA, Bendavid E et al (2021b) Diverse experts’ perspectives on ethical issues of using machine learning to predict HIV/AIDS risk in sub-saharan africa: a modified delphi study. BMJ Open 11(7):e052287 Ongena YP, Haan M, Yakar D, Kwee TC (2020) Patients’ views on the implementation of artificial intelligence in radiology: development and validation of a standardized questionnaire. Eur Radiol 30(2):1033–1040 Parry KW (2004) Constant comparison. In: Lewis-Beck MS, Bryman A, Liao TF (eds) The SAGE encyclopedia of social science research methods. Sage, Thousand Oaks, p 181 Paul Y et al (2018) Artificial intelligence in the healthcare industry in India. The Centre for Internet and Society. pp 1–45 Ravi D et al (2016) Deep learning for health informatics. IEEE J Biomed Health Inform 21(1):4–21 Richardson JP et al (2021) Patient apprehensions about the use of artificial intelligence in healthcare. Npj Digit Med 4(1):1–6 Riggare S et al (2021) Ethical aspects of personal science for persons with Parkinson’s disease: what happens when self-tracking goes from selfcare to publication? J Parkinsons Dis 11(4):1927–1933 Rubeis G (2022) iHealth: the ethics of artificial intelligence and big data in mental healthcare. Internet Interv 28:100518 Ruddick W (1999) Hope and deception. Bioethics 13(3–4):343–357 Saldaña J (2016) The coding manual for qualitative researchers. Sage, London Shearer E, Cho M, Magnus D (2020) Regulatory, social, ethical, and legal issues of artificial intelligence in medicine. In: Xing L, Giger ML, Min JK (eds) Artificial intelligence in medicine: technical basis and clinical applications. Acadamic Press, Cambridge, pp 457–477 Shenton AK (2004) Strategies for ensuring trustworthiness in qualitative research projects. Educ Inf 22:63–75 Shiraishi J, Li Q, Appelbaum D, Doi K (2011) Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med 41(6):449–462 Sixsmith A, Horst BR, Simeonov D, Mihailidis A (2022) Older people’s use of digital technology during the COVID-19 pandemic. Bull Sci Technol Soc 42(1–2):19–24 Snyder J (2020) 31 Kennedy institute of ethics journal exploiting hope: how the promise of new medical interventions sustains us—and makes us vulnerable. Oxford University Press, New York Srivastava P, Hopwood N (2009) A practical iterative framework for qualitative data analysis. Int J Qual Methods 8(1):76–84 Tavanapong W et al (2022) Artificial intelligence for colonoscopy: past, present, and future. IEEE J Biomed Health Inform 3160098:1–17 Tong A, Sainsbury P, Craig J (2007) Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care 19(6):349–357 Topol E (2015) The patient will see you now: the future of medicine is in your hands. Basic Books, NY Topol E (2019) Deep medicine—how artificial intelligence can make healthcare human again. Basic Books, NY Tyler NS et al (2020) An artificial intelligence decision support system for the management of type 1 diabetes. Nat Metab 2(7):612–619 Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–915 Villar JR et al (2015) Improving human activity recognition and its application in early stroke diagnosis. Int J Neural Syst 25(4):1450036 Yu KH, Beam AL, Kohane IS (2018) Artificial intelligence in healthcare. Nat Biomed Eng 2(10):719–731