Etching Characteristics of Quartz Crystal Wafers Using Argon-Based Atmospheric Pressure CF4 Plasma Stabilized by Ethanol Addition

Rongyan Sun1, Xu Yang1, Keiichiro Watanabe2, Shiro Miyazaki3, Tohru Fukano3, Masanobu Kitada4, Kenta Arima1, Kentaro Kawai1, Kazuya Yamamura1
1Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, Osaka, Japan
2Keihanna Research Center, Corp R & D Group, KYOCERA Corporation, 6 Takeda Tobadono, Fushimi, Kyoto, Kyoto, 612-8501, Japan
3Crystal Components Division, Corporate Electronic Components Group, KYOCERA Corporation, 6 Takeda Tobadono, Fushimi, Kyoto, Kyoto, 612-8501, Japan
4Solar Energy Development Division, Corporate Solar Energy Group, KYOCERA Corporation, Kyoto, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Manbachi A, Cobbold RSC (2011) Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 19:187–196. https://doi.org/10.1258/ult.2011.011027

Pan L, Krim J (2013) Scanning tunneling microscope-quartz crystal microbalance study of temperature gradients at an asperity contact. Rev Sci Instrum 84:014901–1–014901–9. https://doi.org/10.1063/1.4767239

Nakazawa M, Kozima S (1982) A study of GT-Type quartz crystal plates. IEEE Trans Sonics Ultrason 29:121–127. https://doi.org/10.1109/T-SU.1982.31321

Nagaura Y, Yokomizo S (1999) Manufacturing method of high frequency quartz oscillators over 1 GHz. In: Proceedings of the 1999 IEEE international frequency control symposium, pp 425–428. https://doi.org/10.1109/FREQ.1999.840797

Yamamura K, Shimada S, Mori Y (2008) Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining. Ann. CIRP 57:567–570. https://doi.org/10.1016/j.cirp.2008.03.132

Sun RY, Yang X, Ohkubo Y, Endo K, Yamamura K (2018) Optimization of gas composition used in plasma chemical vaporization machining for figuring of reaction-sintered silicon carbide with low surface roughness. Sci Rep 8:2376-1–2376-9. https://doi.org/10.1038/s41598-018-20849-5

Mori Y, Yamauchi K, Yamamura K, Sano Y (2000) Development of plasma chemical vaporization machining. Rev Sci Instrum 71:4627–4632. https://doi.org/10.1063/1.1322581

Yu N, Jourdain R, Gourma M, Shore P (2016) Analysis of De-Laval nozzle designs employed for plasma figuring of surfaces. Int J Adv Manuf Technol 87:735–745. https://doi.org/10.1007/s00170-016-8502-y

Castelli M, Jourdain R, Morantz P, Shore P (2012) Rapid optical surface figuring using reactive atom plasma. Precis Eng 36:467–476. https://doi.org/10.1016/j.precisioneng.2012.02.005

Piechulla P, Bauer J, Boehm Paetzelt H, Arnold T (2016) Etch mechanism and temperature regimes of an atmospheric pressure chlorine-based plasma jet process. Plasma Process Polym 13:1128–1135. https://doi.org/10.1002/ppap.201600071

Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26:1685–1694. https://doi.org/10.1109/27.747887

Park J, Henins I, Herrmann HW, Selwyn GS, Hick RF (2001) Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source. J Appl Phys 89:20–28. https://doi.org/10.1063/1.1323753

Sun WT, Li G, Li HP, Bao CY, Wang HB, Zeng S, Gao X, Luo HY (2007) Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol. J Appl Phys 101:123302–1–123302–6. https://doi.org/10.1063/1.2748430

Vandevelde T, Wu TD, Quaeyhaegens C, Vlekken J, D’Olieslaeger M, Stals L (1999) Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin Solid Films 340:159–163. https://doi.org/10.1016/S0040-6090(98)01410-2

Flores O, Castillo F, Martinez H, Villa M, Villalobos S, Reyes PG (2014) Characterization of direct current He-N2 mixture plasma using optical emission spectroscopy and mass spectrometry. Phys Plasmas 21:053502–1–053502–6. https://doi.org/10.1063/1.4875343

Cvelbar U, Krstulovic N, Milosevic S, Mozetic M (2008) Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy. Vacuum 82:224–227. https://doi.org/10.1016/j.vacuum.2007.07.016

Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116. https://doi.org/10.1016/j.carbon.2011.06.095

Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22:055705–1–055705–8. https://doi.org/10.1088/0957-4484/22/5/055705

Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez D, Rojas-Cervantes ML, Martin-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592. https://doi.org/10.1016/0008-6223(95)00120-3

Jimenez M, Rincon R, Marinas A, Calzada MD (2013) Hydrogen production from ethanol decomposition by a microwave plasma: influence of the plasma gas flow. Int J Hydrogen Energy 38:8708–8719. https://doi.org/10.1016/j.ijhydene.2013.05.004

Faggio G, Capasso A, Messina G, Santangelo S, Dikonimos Th, Gagliardi S, Giorgi R, Morandi V, Ortolani L, Lisi N (2013) High-temperature growth of graphene films on copper foils by ethanol chemical vapor deposition. J Phys Chem C 117:21569–21576. https://doi.org/10.1021/jp407013y