Estimation of the water–oil–gas relative permeability curve from immiscible WAG coreflood experiments using the cubic B-spline model

Elsevier BV - Tập 13 - Trang 507-516 - 2016
Dai-Gang Wang1,2, Yong-Le Hu1, Jing-Jing Sun3, Yong Li1
1Research Institute of Petroleum Exploration & Development, PetroChina, Beijing, China
2School of Earth and Space Sciences, Peking University, Beijing, China
3College of Petroleum Engineering, China University of Petroleum, Qingdao, China

Tóm tắt

Immiscible water-alternating-gas (WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency. Nevertheless, considering the complicated phase behavior and various multiphase flow characteristics, gas tends to break through early in production wells in heterogeneous formations because of overriding, fingering, and channeling, which may result in unfavorable recovery performance. On the basis of phase behavior studies, minimum miscibility pressure measurements, and immiscible WAG coreflood experiments, the cubic B-spline model (CBM) was employed to describe the three-phase relative permeability curve. Using the Levenberg–Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially, optimization of production performance including pressure drop, water cut, and the cumulative gas–oil ratio was performed. A novel numerical inversion method was established for estimation of the water–oil–gas relative permeability curve during the immiscible WAG process. Based on the quantitative characterization of major recovery mechanisms, the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment. The proposed method is reliable and can meet engineering requirements. It provides a basic calculation theory for implicit estimation of oil–water–gas relative permeability curve.

Tài liệu tham khảo

Abdollahzadeh A, Reynolds A, Christie MA, et al. Estimation of distribution algorithms applied to history matching. In: SPE reservoir simulation symposium, 21–3 Feb, The Woodlands; 2011. doi:10.2118/141161-MS. Aziz K, Settari A. Petroleum reservoir simulation. Essex: Elsevier Applied Science Publishers; 1979. Barroeta RG, Thompson LG. Importance of using pressure data while history matching a waterflooding process. In: Trinidad and Tobago energy resources conference, 27–30 June, Port of Spain, Trinidad; 2010. doi:10.2118/132347-MS. Barua J, Horne RN, Greenstadt JL, et al. Improved estimation algorithms for automated type-curve analysis of well test. SPE Form Eval. 1988;3(1):186–96. doi:10.2118/14255-PA. Chen BL, Reynolds AC. Ensemble-based optimization of the water-alternating-gas-injection process. In: SPE reservoir simulation symposium, 23–25 Feb, Houston; 2015. doi:10.2118/173217-MS. Chen L, Zhang G, Ge J, et al. Research of the heavy oil displacement mechanism by using alkaline/surfactant flooding system. Colloids Surf A. 2013;434(19):63–71. doi:10.1016/j.colsurfa.2013.05.035. Chen S, Li G, Peres A, et al. A well test for in situ determination of relative permeability curves. SPE Reserv Eval Eng. 2008;11(1):95–107. doi:10.2118/96414-PA. Daoud AM, Velasquez LV. 3D field-scale automatic history matching using adjoint sensitivities and generalized travel time inversion. In: SPE annual technical conference and exhibition, 24–27 Sept, San Antonio; 2006. doi:10.2118/101779-MS. de Boor C. A practical guide to splines. New York: Springer-Verlag; 1978. Eydinov D, Gao G, Li G, et al. Simultaneous estimation of relative permeability and porosity/permeability fields by history matching production data. J Can Pet Technol. 2009;48(12):13–25. doi:10.2118/132159-PA. Guo XQ, Yan W, Ma QL. Experimental study of the phase behavior of the reservoir fluid-CO2 system. J Univ Pet China (Ed Nat Sci). 2000;24(3):12–5 (in Chinese). Han DK. Discussion of concepts, countermeasures, and technical routines for the redevelopment of high water-cut oilfields. Pet Explor Dev. 2010;37(5):583–91 (in Chinese). Hou J, Wang DG, Luo FQ, et al. Estimation of the water-oil relative permeability curve from radial displacement experiments. Part 1: numerical inversion method. Energy Fuels. 2012a;26(7):4291–9. doi:10.1021/ef300018w. Hou J, Luo FQ, Wang DG, et al. Estimation of the water-oil relative permeability curve from radial displacement experiments. Part 2: reasonable experimental parameters. Energy Fuels. 2012b;26(7):4300–9. doi:10.1021/ef3005866. Hou J, Zhou K, Zhang XS, et al. A review of closed-loop reservoir management. Pet Sci. 2015;12(1):114–28. doi:10.1007/s12182-014-0005-6. Kulkarni KN, Datta-Gupta A. Estimating relative permeability from production data: a streamline approach. SPE J. 2000;5(4):402–11. doi:10.2118/66907-PA. Laochamroonvorapongse R, Kabir CS, Lake LW. Performance assessment of miscible and immiscible water-alternating gas floods with simple tools. J Pet Sci Eng. 2014;122:18–30. doi:10.1016/j.petrol.2014.08.012. Lee TY, Seinfeld JH. Estimation of absolute and relative permeabilities in petroleum reservoirs. Inverse Problem. 1987;3(4):711–28. doi:10.1088/0266-5611/3/4/015. Li H, Chen S, Yang D, et al. Estimation of relative permeability by assisted history matching using the ensemble Kalman filter method. In: Canadian international petroleum conference, 16–8 Jun, Calgary; 2009. doi:10.2118/2009-052. Li H, Chen SN, Yang DY, et al. Estimation of relative permeability by assisted history matching using the ensemble Kalman filter method. J Can Pet Technol. 2012;51(3):1–10. doi:10.2118/156027-PA. Li H, Yang DYT. Estimation of multiple petrophysical parameters for the PUNQ-S3 model using ensemble-based history matching. In: SPE EUROPEC/EAGE annual conference and exhibition, 23–26 May, Vienna; 2011. doi:10.2118/143583-MS. Li Y. Study of enhancing oil recovery of continental reservoirs by water drive technology. Acta Pet Sin. 2009;30(3):396–9 (in Chinese). Luo P, Zhang YP, Huang S. A promising chemical-augmented WAG process for enhanced heavy oil recovery. Fuel. 2013;104:333–41. doi:10.1016/j.fuel.2012.09.070. Masihi M, Javanbakht L, Bahaloo HF, et al. Experimental investigation and evaluation of three phase relative permeability models. J Pet Sci Eng. 2011;79(1–2):45–53. doi:10.1016/j.petrol.2011.08.017. Miao TJ, Yu BM, Duan YG, et al. A fractal model for spherical seepage in porous media. Int Commun Heat Mass Transfer. 2014;58:71–8. doi:10.1016/j.icheatmasstransfer.2014.08.023. Oliver DS, Chen Y. Recent progress on reservoir history matching: a review. Computational Geosciences. 2011;15(1):185–221. doi:10.1007/s10596-010-9194-2. Reynolds PC, Li R, Oliver DS. Simultaneous estimation of absolute and relative permeability by automatic history matching of three-phase flow production data. J Can Pet Technol. 2004;43(3):37–46. doi:10.2118/04-03-03. Salehi MM, Safarzadeh MA, Sahraei E, et al. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process. J Pet Sci Eng. 2014;120:86–93. doi:10.1016/j.petrol.2014.05.017. Sheng JJ. Enhanced oil recovery in shale reservoirs by gas injection. Journal of Natural Gas Science and Engineering. 2015;2:252–9. doi:10.1016/j.jngse.2014.12.002. Sigmund PM, McCaffery FG. An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media. SPE Journal. 1979;19(1):15–28. doi:10.2118/6720-PA. Wang YD, Li GM, Reynolds AC. Estimation of depths of fluid contacts and relative permeability curves by history matching using iterative ensemble Kalman smoothers. SPE Journal. 2010;15(2):509–25. doi:10.2118/119056-PA. Wang YD, Li M. Reservoir history matching and inversion using an iterative ensemble Kalman filter with covariance localization. Pet Sci. 2011;8(3):316–27. doi:10.1007/s12182-011-0148-7. Xu P, Qiu SX, Yu BM, et al. Prediction of relative permeability in unsaturated porous media with a fractal approach. Int J Heat Mass Transf. 2013;64:829–37. doi:10.1016/j.ijheatmasstransfer.2013.05.003. Zhang Y, Yang DY. Simultaneous estimation of relative permeability and capillary pressure for tight formations using ensemble-based history matching method. Comput Fluids. 2013;71:446–60. doi:10.1016/j.compfluid.2012.11.013.