Estimation of the validity domain of hyper-reduction approximations in generalized standard elastoviscoplasticity

David Ryckelynck1, Laurent Gallimard2, Samuel Jules1
1MINES ParisTech, PSL - Research University, Centre des matériaux, CNRS UMRÊ7633, 10 rue Desbruères, Evry, 91003, France
2LEME, Université Paris Ouest - Nanterre, 50 rue de Sèvres, Ville d’Avray, 92410, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ganapathysubramanian B, Zabaras N: A non-linear dimension reduction methodology for generating data-driven stochastic input models. J Comput Phys 2008, 227(13):6612–6637. 10.1016/j.jcp.2008.03.023

Balima O, Favennec Y, Petit D: Model reduction for heat conduction with radiative boundary conditions using the modal identification method. Numer Heat Transfer Part B-Fundam 2007, 52(2):107–130. 10.1080/10407790701347357

Daescu DN, Navon IM: Efficiency of a pod-based reduced second-order adjoint model in 4d-var data assimilation. Int J Numer Methods Fluids 2007, 53(6):985–1004. 10.1002/fld.1316

Ryckelynck D: A priori hyperreduction method: an adaptive approach. J Comput Phys 2005, 202(1):346–366.

Ryckelynck D: Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 2009, 77(1):75–89. 10.1002/nme.2406

Chinesta F, Keunings R, Leygue A: The Proper Generalized Decomposition for Advanced Numerical Simulations: a Primer. SpringerBriefs in applied sciences and technology. Springer, New Haven; 2014.

Ngoc Cuaong N, Veroy K, Patera AT (2005) Certified real-time solutin of parametrized partial differential equations. In: Yip (ed)Handbook of Material Modeling, 1529–1564.. Springer, Sidney. doi:10.1007/978–1-4020–3286–8_76. Ngoc Cuaong N, Veroy K, Patera AT (2005) Certified real-time solutin of parametrized partial differential equations. In: Yip (ed)Handbook of Material Modeling, 1529–1564.. Springer, Sidney. doi:10.1007/978-1-4020-3286-8_76.

Ammar A, Chinesta F, Diez P, Huerta A: An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 2010, 199(25–28):1872–1880.

Ladevèze P, Chamoin L: On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 2011, 200(23–24):2032–2047.

Kerfriden P, Ródenas JJ, Bordas SP-A: Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error. Int J Numer Meth Engng 2014, 97: 395–422. 10.1002/nme.4588

de Almeida JPM: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics. Int J Numer Methods Eng 2013, 94(10):961–984.

Arian E, Fahl M, Sachs EW (2000) Trust-region proper orthogonal decomposition for flow control In: NASA/CR-. 2000–210124, No. 2000–25.. ICASE Report, Ohio University.

Michel B, Laurent C: Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J Comput Phys 2008, 227: 7813–7840. 10.1016/j.jcp.2008.04.034

Bui D, Hamdaoui M, De Vuyst F: Pod-isat: An efficient pod-based surrogate approach with adaptive tabulation and fidelity regions for parametrized steady-state pde discrete solutions. Int J Numer Methods Eng 2013, 94(7):648–671.

Rozza G, Huynh DBP, Patera AT: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 2008, 15(3):229–275. 10.1007/s11831-008-9019-9

Le Bris C, Lelièvre T, Maday Y: Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constructive Approximation 2009, 30(3):621–651.

Barrault M, Maday Y, Nguyen NC, Patera AT: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 2004, 339(9):667–672. 10.1016/j.crma.2004.08.006

Nguyen NC, Patera AT, Peraire J: A ‘best points’ interpolation method for efficient approximation of parametrized functions. Int J Numer Methods Eng 2008, 73(4):521–543. 10.1002/nme.2086

Ortiz M, Stainier L: The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Engrg 1999, 171: 419–444. 10.1016/S0045-7825(98)00219-9

Miehe C: Strain-driven homogenization of inelastic micro-structures and composites based on an incremental variational formulation. Int J Numer Meth Eng 2002, 55: 1285–1322. 10.1002/nme.515

Lahellec N, Suquet P: On the effective behavior of nonlinear inelastic composites: I. incremental variational principles. J Mech Phys Solids 2007, 55(9):1932–1963.

Ladevèze P, Leguillon D: Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 1983, 20: 485–509. 10.1137/0720033

Gallimard L, Ladevèze P, Pelle JP: Error estimation and adaptivity in elastoplasticity. Int J Numer Methods Eng 1996, 39(2):189–217. 10.1002/(SICI)1097-0207(19960130)39:2<189::AID-NME849>3.0.CO;2-7

Ladevèze P, Moes N: A posteriori constitutive relation error estimators for nonlinear finite element analysis and adaptive control. In In Advances in Adaptive Computational Methods in Mechanics. Studies in Applied Mechanics. Edited by: Ladevèze P, Oden JT. Elsevier Publication, The University of Texas at Austin, TX, USA; 1998:231–256. 10.1016/S0922-5382(98)80013-5

Ladevèze P, Blaysat B, Florentin E: Strict upper bounds of the error in calculated outputs of interest for plasticity problems. Comput Methods Appl Mech Eng 2012, 245–46(0):194–205.

Bouclier R, Louf F, Chamoin L: Real-time validation of mechanical models coupling pgd and constitutive relation error. Comput Mech 2013, 52(4):861–883.

Pelle J-P, Ryckelynck D: An efficient adaptive strategy to master the global quality of viscoplastic analysis. Comput Struct 2000, 78(1–3):169–183.

Paraschivoiu M, Peraire J, Patera AT: A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput Methods Appl Mech Eng 1997, 150(1–4):289–312.

Wirtz D, Haasdonk B: Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems. Syst Control Lett 2012, 61(1):203–211.

Karhunen K: Über lineare methoden in der wahrscheinlichkeitsrechnung. Ann Academiae Scientiarum Fennicae 1947, 37: 3–79.

Loève MM: Probability Theory, The University Series in Higher Mathematics. Van Nostrand, Princeton, NJ; 1963.

Sirovich L: Turbulence and the dynamics of coherent structures. 1. coherent structures. Q Appl Mathematics 1987, 45(3):561–571.

Radovitzky R, Ortiz M: Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput Methods Appl Mech Engrg 1999, 172: 203–240. 10.1016/S0045-7825(98)00230-8

Biot MA: Mechanics of Incremental Deformations. Wiley, New York; 1965.

Ziegler H (1963) Some Extremum Principles in Irreversible Thermodynamics with Applications to Continuum Mechanics vol. Progress in Solid Mechanics, vol. IV.(Sneddon IN, Hill R, eds.), North-Holland, Amsterdam.

Germain P, Nguyen QS, Suquet P: Continuum thermodynamics. J Appl Mech 1983, 50: 1010–1020. 10.1115/1.3167184

Halphen B, Nguyen QS: Generalized standard materials. J De Mecanique 1975, 14(1):39–63.

Lemaitre J, Chaboche J-L: Mecanique des Materiaux Solides. Dunod, English version published by Cambridge University Press: Cambridge, Paris; 1985.

Ryckelynck D: Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 2009, 77(1):75–89. 10.1002/nme.2406

Besson J, Cailletaud G, Chaboche J-L, Forest S (2009) Non-linear mechanics of materials In: Solid Mechanics and Its Applications. 167 2010.

Fritzen F, Bhlke T: Nonlinear homogenization using the nonuniform transformation field analysis. PAMM 2011, 11(1):519–522.

Fritzen F, Leuschner M: Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 2013, 260(0):143–154.