Ước lượng tỷ lệ hô hấp từ các tín hiệu ballistocardiogram bằng cách sử dụng biến đổi Hilbert

Onno Linschmann1, Steffen Leonhardt1, Antti Vehkaoja2, Christoph Hoog Antink3
1Medical Information Technology, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
2Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
3KIS*MED (AI Systems in Medicine), TU Darmstadt, Darmstadt, Germany

Tóm tắt

Tóm tắt Nền tảng Việc đo lường tỷ lệ hô hấp thường liên quan đến sự khó chịu cho bệnh nhân do cảm biến tiếp xúc hoặc yêu cầu thời gian cao cho nhân viên y tế khi phải đếm thủ công. Phương pháp Trong bài báo này, hai phương pháp để trích xuất liên tục tỷ lệ hô hấp từ các tín hiệu ballistocardiography không gây chú ý được giới thiệu. Biến đổi Hilbert được sử dụng để tạo ra một tín hiệu pha không thay đổi độ lớn theo tỷ lệ hô hấp. Tỷ lệ hô hấp sau đó có thể được ước tính, trước tiên là bằng cách sử dụng phát hiện đỉnh đơn giản, và thứ hai là bằng cách vi phân. Kết quả Bằng cách phân tích một bộ dữ liệu từ phòng thí nghiệm giấc ngủ bao gồm chín bản ghi của những người khỏe mạnh kéo dài hơn 63 giờ và bao gồm hơn 59.000 nhịp thở, một sai số tuyệt đối trung bình thấp tới 0.7 BPM cho cả hai phương pháp đã đạt được. Kết luận Các kết quả khuyến khích việc đánh giá thêm cho các bệnh nhân nằm viện và cho các ứng dụng chăm sóc tại nhà, đặc biệt là với những bệnh nhân mắc các bệnh về hệ hô hấp như COPD hoặc ngưng thở khi ngủ.

Từ khóa


Tài liệu tham khảo

Liu H, Allen J, Zheng D, Chen F. Recent development of respiratory rate measurement technologies. Physiol Meas. 2019;40(7):7.

Garrido D, Assioun JJ, Keshishyan A, Sanchez-Gonzalez MA, Goubran B. Respiratory rate variability as a prognostic factor in hospitalized patients transferred to the intensive care unit. Cureus. 2018;10(1):2100.

Wysocki M, Cracco C, Teixeira A, Mercat A, Diehl J-L, Lefort Y, Derenne J-P, Similowski T. Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation. Crit Care Med. 2006;34(8):2076–83.

Ayad S, Khanna AK, Iqbal SU, Singla N. Characterisation and monitoring of postoperative respiratory depression: current approaches and future considerations. Br J Anaesthesia. 2019;123(3):378–91.

Pattinson KTS. Opioids and the control of respiration. Br J Anaesthesia. 2008;100(6):747–58.

Flenady T, Dwyer T, Applegarth J. Accurate respiratory rates count: So should you! Australasian Emerg Nurs J. 2017;20(1):45–7.

Beattie ZT, Hayes TL, Guilleminault C, Hagen CC. Accurate scoring of the apnea-hypopnea index using a simple non-contact breathing sensor. J Sleep Res. 2013;22(3):356–62.

Agnew HW, Webb WB, Williams RL. The first night effect: an EEG study of sleep. Psychophysiology. 1966;2(3):263–6.

Rechtschaffen A, Verdone P. Amount of dreaming: effect of incentive, adaptation to laboratory, and individual differences. Percept Motor Skills. 1964;19:947–58.

Sadek I, Biswas J, Abdulrazak B. Ballistocardiogram signal processing: a review. Health Inf Sci Syst. 2019;7(1):10.

Paalasmaa J. Monitoring sleep with force sensor measurement. PhD thesis, Department of Computer Science Series of Publications A. 2014.

Paalasmaa J, Waris M, Toivonen H, Leppäkorpi L, Partinen M. Unobtrusive online monitoring of sleep at home. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2012;3784–3788.

Wiens AD, Etemadi M, Roy S, Klein L, Inan OT. Toward continuous, noninvasive assessment of ventricular function and hemodynamics: wearable ballistocardiography. IEEE J Biomed Health Inform. 2015;19(4):1435–42.

Karlen W, Mattiussi C, Floreano D. Adaptive sleep/wake classification based on cardiorespiratory signals for wearable devices. In: 2007 IEEE Biomedical Circuits and Systems Conference. 2007;203–206.

Watanabe K, Watanabe T, Watanabe H, Ando H, Ishikawa T, Kobayashi K. Noninvasive measurement of heartbeat, respiration, snoring and body movements of a subject in bed via a pneumatic method. IEEE Trans Biomed Eng. 2005;52(12):2100–7.

Zhu Xin, Chen Wenxi, Nemoto T, Kanemitsu Y, Kitamura K, Yamakoshi K. Accurate determination of respiratory rhythm and pulse rate using an under-pillow sensor based on wavelet transformation. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2005;5869–5872.

Alihanka J, Vaahtoranta K, Saarikivi I. A new method for long-term monitoring of the ballistocardiogram, heart rate, and respiration. Am J Physiol. 1981;240(5):384–92.

Erkinjuntti M, Vaahtoranta K, Alihanka J, Kero P. Use of the SCSB method for monitoring of respiration, body movements and ballistocardiogram in infants. Early Hum Dev. 1984;9(2):119–26.

Paalasmaa J, Leppäkorpi L, Partinen M. Quantifying respiratory variation with force sensor measurements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2011;3812–3815.

Wang X, Jiang F, Yang D, Liao Y. Estimation of the respiratory component from ballistocardiography signal using adaptive interference cancellation. In: 2011 Chinese Control and Decision Conference (CCDC). 2011;571–574.

Harada T, Sakata A, Mori T, Sato T. Sensor pillow system: monitoring respiration and body movement in sleep. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113). 2000;351–3561.

Xie Q, Wang G, Lian Y. Heart rate estimation from ballistocardiography based on hilbert transform and phase vocoder. In: 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 139–142. IEEE. (26.10.2018 - 30.10.2018).

Xie Q, Li Y, Wang G, Lian Y. Heart rate estimation from ballistocardiogram using hilbert transform and viterbi decoding. In: 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). 2019;189–193. IEEE.

Huang NE, Wu Z, Long SR, Arnold KC, Chen X, Blank K. On instantaneous frequency. Adv Adapt Data Anal. 2009;01(02):177–229.

Brüser C, Winter S, Leonhardt S. Robust inter-beat interval estimation in cardiac vibration signals. Physiol Meas. 2013;34(2):123–38.

Soni R, Muniyandi M. Breath rate variability: a novel measure to study the meditation effects. Int J Yoga. 2019;12(1):45–54.

Kleiger RE, Stein PK, Bosner MS, Rottman JN. Time domain measurements of heart rate variability. Cardiol Clin. 1992;10(3):487–98.

Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51.

Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.

Gutierrez G, Williams J, Alrehaili GA, McLean A, Pirouz R, Amdur R, Jain V, Ahari J, Bawa A, Kimbro S. Respiratory rate variability in sleeping adults without obstructive sleep apnea. Physiol Rep. 2016;4(17):12949.

Paajanen M, Lekkala J, Kirjavainen K. Electromechanical film (EMFi) - a new multipurpose electret material. Sensors and Actuators A Physical. 2000;84(1):95–102.