Estimation of parameters on Texas reservoirs using least absolute shrinkage and selection operator
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bakken, T., Bustos, A., & Amoy, S. J. (2016). Allocation of water consumption in multipurpose reservoirs. Water Policy, 18(4), 932–947.
Bardsley, W. E., Vetrova, V., & Liu, S. (2015). Toward creating simpler hydrological models: A LASSO subset selection approach. Environmental Modeling and Software, 72, 33–43.
Bastian, R. W., Jordan, M., Christoph, G., Kate, R., & Jussi, B. (2017). Applying regularized logistic regression (RLR) for the discrimination of sediment facies in reservoirs based on composite fingerprints. Journal of Soils and Sediments, 17(6), 1777–1795.
Bazargan, H., & Christie, M. (2017). Bayesian model selection for complex geological structures using polynomial chaos proxy. Computational Geosciences, 21(3), 533–551.
Bresney, S., Limbrunner, J., Angarita, H., Escobar, M., & Vogel, R. (2016). Tradeoffs between hydropower generation and environmental impacts in the Alto Magdalena River basin. Tufts University, ProQuest Dissertation and Thesis. Publishing, 10165313. https://search.proquest.com/docview/1845022697?pq-origsite=primo .
Chu, H. B., Wei, J. H., & Qiu, J. (2018). Monthly streamflow forecasting using EEMD-LASSO-DBN method based on multi-scale predictors selection. Water, 10, 1486. https://doi.org/10.3390/w10101486 .
Gao, H., Wu, W., Li, J. H., Li, H. W., Li, J., & Yang, R. Q. Yang. (2013). Forward LASSO analysis for high-order interactions in genome-wide association study. Briefings in Bioinformatics, 15(4), 552–561.
James, T. (1987). Optimal conjunctive management of supplemental irrigation reservoirs and cropland. University of Illinois at Urbana-Champaign, ProQuest Dissertations Publishing, 8721767. https://search.proquest.com/docview/303566469/?pq-origsite=primo .
Severne, Z., Carlos, A., Uwe, L., Thomas, K., Mohamed, M., Sylvie, R., et al. (2011). Topoisomer differentiation of molecular knots by FTICR MS: Lessons from class II LASSO peptides. Journal of the American Society for Mass Spectrometry, 22(3), 467–479.
Tibshirani, R. (1996). Regression shrinkage and selection via the lassso. Journal of the Royal Statistical Society, Series B, 58(1), 267–288.
Victor, P., Daniel, C., Antonio, P., & Santiago, M. (2010). Hard modeling multivariate curve resolution using LASSO: Application to ion mobility spectra. Chemometrics and Intelligent Laboratory Systems, 104(2), 319–332.
Viswanath, N. C., Dileep Kumar, P. G., Ammad, K. K., & Usha Kumari, E. R. (2015). Gound water quality and multivariate statistical methods. Environmental Processes, 2, 237–260. https://doi.org/10.1007/s40710-015-0071-9 .
Water Data for Texas Organization. (2018). Texas reservoirs: Monitored water supply reservoirs are 89.9% full on 2018-12-26. https://waterdatafortexas.org/reservoirs/statewide .
Xie, L. M. (2019). Statistical analysis based on Lake Michigan fish acoustic data using LASSO method. Asian Journal of Probability and Statistics, 2(4), 2–27. (2018; article no. AJPAS. 46563).
Yan, S. F., Yu, S. E., Wu, Y. B., Pan, D. F., & Dong, J. G. (2018). Understanding groundwater table using a statistical model. Water Science and Engineering, 11(1), 1–7.
Zhao, J., Wang, L., & Yang, C. L. (2017). Adaptive LASSO echo state network for time series prediction. IEEE, 2017 Chinese Automation Congress (CAC). 978-1-5386-3524-7/17/IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8243686 .