Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations

Journal of Geophysical Research D: Atmospheres - Tập 121 Số 10 - Trang 5948-5971 - 2016
Rong Wang1,2,3, Yves Balkanski1,3, Oliviér Boucher4, Philippe Ciais1,3, Gregory L. Schuster5, Frédéric Chevallier1, B. H. Samset6, Junfeng Liu2, Shilong Piao2,3, Myrto Valari7, Shu Tao2,3
1Laboratoire des Sciences du Climat et de l’Environnement, CEA/CNRS/UVSQ, Gif-sur-Yvette, France
2Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
3Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
4Laboratoire de Météorologie Dynamique, IPSL/CNRS Pierre et Marie Curie Université Paris France
5NASA, Langley Research Center, Hampton, Virginia, USA
6CICERO Center for International Climate and Environmental Research, Blindern, Oslo, Norway
7Laboratoire de Météorologie Dynamique, IPSL, CNRS, Ecole Polytechnique, Palaiseau, France

Tóm tắt

AbstractBlack carbon (BC) contributes to global warming by absorbing sunlight. However, the size of this contribution, namely, the direct radiative forcing (RF), ranges from +0.1 to +1.0 W m−2, largely due to differences between bottom‐up and observation‐based estimates. Current global models systematically underestimate BC radiation absorption relative to observations, which is often attributed to the underestimation of BC emissions. Several studies that adjusted emissions to correct biases of global aerosol models resulted in a revised upward estimate of the BC RF. However, the BC RF was never optimized against observations in a rigorous mathematical manner. Here we simulated the absorption of solar radiation by BC from all sources at the 10 km resolution by combining a highly disaggregated emission inventory with a nested aerosol climate model and a downscaling method. As a result, the normalized mean bias in BC radiation absorption was reduced from −51% to −24% in Asia and from −57% to −50% elsewhere. We applied a Bayesian method that makes the best account of all model, representativeness and observational uncertainties to estimate the BC RF and its uncertainty. Using the new emission inventory and high‐resolution model reduces uncertainty in BC RF from −101%/+152% to −70%/+71% over Asia and from −83%/+108% to −64%/+68% over other continental regions. Finally we derived an observationally constrained BC RF of 0.61 Wm−2 (0.16 to 1.40 as 90% confidence) as our best estimate. Our estimate implies that reduction in BC emissions would contribute to slow down global warming, but the contribution could be less than previously thought.

Từ khóa


Tài liệu tham khảo

10.1029/2009JD013616

10.1029/2001JD001010

10.5194/gmd-4-325-2011

10.5194/acp-10-4477-2010

10.1029/2011JD016816

10.5194/acp-10-7439-2010

10.1080/02786820500421521

10.1029/2003JD003697

10.1029/2006JD007315

10.1029/2006GB002840

10.1002/jgrd.50171

10.1007/978-94-017-9649-1_3

10.1029/98JD00997

10.1007/s40641-015-0010-x

Bouttier F. andP.Courtier(1999) Data assimilation concepts and methods.ECMWF Meteorological Training Course Lecture Series 10–16.

10.1029/2005JD006356

10.1073/pnas.1203707109

10.1029/2001JD001397

10.1364/AO.27.002396

10.1002/2013JD019912

10.1029/96JD00671

10.5194/acp-8-737-2008

10.5194/acp-6-4321-2006

10.1029/2000JD900282

European Centre for Medium‐Range Weather Forecasts(2003) Forty‐year European reanalysis of the global atmosphere. [Available athttp://www.ecmwf.int/products/ Accessed on 6 Nov 2013.]

10.1029/2002JD002195

10.5194/acp-12-2987-2012

10.1029/2002JD002408

10.1175/JCLI-D-11-00650.1

10.1007/s10584-011-0154-1

10.5194/acp-14-11031-2014

10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

10.1038/ncomms6065

10.1016/S0034-4257(98)00031-5

10.1007/s00382-006-0158-0

10.1038/35055518

10.1029/2009JD013795

10.1029/2011JD017218

10.5194/acp-8-1195-2008

10.1029/2007JD009756

10.5194/acp-11-10733-2011

10.5194/acp-13-5969-2013

10.1029/2004JD004999

10.1029/2001JD900038

10.5194/acp-9-9001-2009

10.1029/2003GB002199

10.5194/acp-10-7017-2010

10.1029/2010JD015145

10.5194/gmd-5-709-2012

10.1002/qj.49711247414

10.1029/2012JD018446

Maxwell Garnett J. C., 1904, Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. London, 203, 443

10.5194/gmd-6-981-2013

10.5194/acp-13-1853-2013

Myhre G., 2013, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 659

10.5194/gmd-6-263-2013

10.1029/2008JD010680

10.1038/ngeo156

10.1029/2004JD004757

10.1029/2008JD011073

10.1016/j.jaerosci.2009.08.009

10.5194/acp-13-2423-2013

10.5194/acp-14-12465-2014

10.1073/pnas.0731897100

Schulz M.(2007) Constraining Model Estimates of the Aerosol Radiative Forcing Thèse d'Habilitation à Diriger des Recherches Université Pierre et Marie Curie Paris VI.

10.1029/97JD02779

10.5194/acp-6-5225-2006

10.1029/2004JD004548

10.1029/2008GL036576

10.5194/acp-16-1565-2016

10.5194/acp-12-7431-2012

10.1002/2013GL057775

10.5194/acp-8-5353-2008

10.1126/science.1210026

10.5194/acp-5-3233-2005

10.1029/2007GL030377

10.5194/acp-5-1125-2005

10.5194/acp-13-3245-2013

10.1029/94JD01345

10.5194/acp-6-3423-2006

10.5194/acp-10-11707-2010

10.1029/2003JD004084

10.1002/2013JD020824

10.1021/es3003684

10.1021/es2032218

10.5194/acp-13-5189-2013

10.1073/pnas.1318763111

10.1021/es5021422

10.5194/acp-14-10989-2014

10.1029/2000JD000198

10.3334/CDIAC/hippo_010

10.1098/rsta.2010.0313

10.1029/2010GL044555

10.5194/acp-15-11521-2015