Establishment of neuronal connectivity during development of the <i>Drosophila</i> larval visual system

Wiley - Tập 28 Số 3 - Trang 313-329 - 1995
Ana Regina Nascimento Campos1, Kevin J. Lee, Hermann Steller
1Department of Biology, McMaster University, Hamilton, Ontario, Canada

Tóm tắt

AbstractWe used confocal microscopy in conjunction with specific antibodies and enhancer trap strains to investigate the development of specific neuronal connections in a simple model system, the larval visual system of Drosophila. We find that the establishment of axonal projections from the larval photoreceptor neurons to their central nervous system targets involves a series of discrete steps. During embryogenesis, the larval optic nerve contacts several different cell types, including optic lobe pioneer (OLP) neurons and a number of glial cells. We demonstrate that OLP neurons are present and project normally in glass (gl) mutant embryos in which the larval optic nerve fails to develop, suggesting that they do not depend on interactions with the larval optic nerve for differentiation and proper axonal projection. The OLPs fail to differentiate properly in disconnected (disco) mutant embryos, where appropriate connections between the larval optic nerve and its targets in the brain are not formed. The disco gene is expressed in the OLPs and may therefore act autonomously to direct the differentiation of these cells. Taken together, our results suggest that the OLPs act as an intermediate target required for the establishment of normal optic nerve projection and connectivity. © 1995 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1038/260054a0

10.1038/304062a0

10.1126/science.218.4577.1082

10.1016/0896-6273(92)90201-N

10.1126/science.3129785

Bolwig N., 1946, Senses and sense organs of the anterior end of the house fly larva, Vidensk. Medd. Dansk. Naturh. Foren., 109, 80

Bovolenta P., 1991, Perturbation of neuronal differentiation and axon guidance in the spinal cord of mouse embryos lacking a floor plate: analysis of Danforth's short tail mutation, Development, 113, 625, 10.1242/dev.113.2.625

10.1242/dev.120.10.2957

10.1007/978-3-662-02454-6

10.1016/0896-6273(94)90308-5

10.1016/0925-4773(91)90030-A

10.1126/science.3055291

10.1242/dev.119.3.855

10.1016/0012-1606(84)90050-2

10.1007/978-1-4899-2519-0_13

10.1038/347179a0

10.1016/S0092-8674(05)80030-3

10.1007/BF00333712

10.1016/0092-8674(91)90571-F

10.1002/j.1460-2075.1991.tb08013.x

10.1016/0092-8674(92)90472-O

10.1242/dev.117.2.793

10.1016/0092-8674(91)90509-W

10.1523/JNEUROSCI.13-02-00752.1993

10.1002/j.1460-2075.1991.tb08014.x

Meinertzhagen I. A., 1973, Developmental Neurobiology of Arthropods, 51

10.1016/S0022-5320(75)80010-4

10.1016/0012-1606(78)90096-9

10.1038/340531a0

10.1083/jcb.107.3.1177

10.1016/0959-4388(92)90161-D

Power M. E., 1943, The effect of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster, J. Exp., 94, 33

10.1016/0012-1606(88)90139-X

10.1002/neu.480220503

10.1016/0896-6273(92)90063-J

Schwab M. E., 1991, Channeling of developing rat corticospinal tract axons by myelin‐associated neurite growth inhibitors, J. Neurosci., 11, 709, 10.1523/JNEUROSCI.11-03-00709.1991

10.1016/0896-6273(91)90124-I

10.1073/pnas.50.4.703

10.1016/0092-8674(87)90180-2

Tix S., 1989, Pre‐existing neuronal pathways in the developing optic lobes of Drosophila, Development, 105, 739, 10.1242/dev.105.4.739

10.1016/0092-8674(84)90069-2