Epimutations in both the TESK2 and MMACHC promoters in the Epi-cblC inherited disorder of intracellular metabolism of vitamin B12

Abderrahim Oussalah1, Youssef Siblini1, Sébastien Hergalant1, Céline Chéry1, Pierre Rouyer1, Catia Cavicchi2, Renzo Guerrini2, Pierre‐Emmanuel Morange3, David‐Alexandre Trégouët4, Mihaela Pupavac5, David K. Watkins5, Tomi Pastinen5, Wendy K. Chung6, Can Fıçıcıoğlu7, François Feillet8, D. Sean Froese9, Matthias Baumgartner9, Jean‐François Benoist10, Jacek Majewski5, Amelia Morrone11, David S. Rosenblatt5, Jean Louis Guéant12
1INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Nancy, France
2Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children’s Hospital, Viale Pieraccini 24, 50139, Florence, Italy
3INSERM UMR_S 1263, Center for CardioVascular and Nutrition Research (C2VN), Aix-Marseille University, 13385, Marseille, France
4INSERM, BPH, U1219, Université Bordeaux, 33000, Bordeaux, France
5Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
6Departments of Pediatrics and Medicine, Columbia University, New York, USA
7Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
8Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
9Division of Metabolism, University Children’s Hospital, University of Zürich, Zürich, Switzerland
10Biochemistry Hormonology Laboratory, Robert-Debré University Hospital, APHP, 48 bd Serurier, 75019, Paris, France
11Department of NEUROFARBA, University of Florence, Florence, Italy
12Department of Molecular Medicine, Division of Biochemistry, Molecular Biology and Nutrition, University Hospital of Nancy, 54000, Nancy, France

Tóm tắt

AbstractBackgroundepi-cblCis a recently discovered inherited disorder of intracellular vitamin B12metabolism associating hematological, neurological, and cardiometabolic outcomes. It is produced by an epimutation at the promoter common toCCDC163PandMMACHC, which results from an aberrant antisense transcription due to splicing mutations in the antisensePRDX1gene neighboringMMACHC. We studied whether the aberrant transcription produced a second epimutation by encompassing the CpG island of theTESK2gene neighboringCCDC163P.MethodsWe unraveled the methylome architecture of theCCDC163PMMACHCCpG island (CpG:33) and theTESK2CpG island (CpG:51) of 17 epi-cblCcases. We performed an integrative analysis of the DNA methylome profiling, transcriptome reconstruction of RNA-sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-Seq) of histone H3, and transcription expression ofMMACHCandTESK2.ResultsThePRDX1splice mutations and activation of numerous cryptic splice sites produced antisense readthrough transcripts encompassing the bidirectionalMMACHC/CCDC163Ppromoter and theTESK2promoter, resulting in the silencing of both theMMACHCandTESK2genes through the deposition of SETD2-dependent H3K36me3 marks and the generation of epimutations in the CpG islands of the two promoters.ConclusionsThe antisense readthrough transcription of the mutatedPRDX1produces an epigenetic silencing ofMMACHCandTESK2. We propose using the term 'epi-digenism' to define this epigenetic disorder that affects two genes. Epi-cblCis an entity that differs fromcblC.Indeed, thePRDX1 and TESK2altered expressions are observed in epi-cblCbut not incblC, suggesting further evaluating the potential consequences on cancer risk and spermatogenesis.

Từ khóa


Tài liệu tham khảo

Zhou H, Brockington M, Jungbluth H, Monk D, Stanier P, Sewry CA, Moore GE, Muntoni F. Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am J Hum Genet. 2006;79(5):859–68.

Gueant JL, Chery C, Oussalah A, Nadaf J, Coelho D, Josse T, Flayac J, Robert A, Koscinski I, Gastin I, et al. APRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat Commun. 2018;9(1):67.

Cavicchi C, Oussalah A, Falliano S, Ferri L, Gozzini A, Gasperini S, Motta S, Rigoldi M, Parenti G, Tummolo A, et al. PRDX1 gene-related epi-cblC disease is a common type of inborn error of cobalamin metabolism with mono- or bi-allelic MMACHC epimutations. Clin Epigenet. 2021;13(1):137.

Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990–8.

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.

Gallet P, Oussalah A, Pouget C, Dittmar G, Chery C, Gauchotte G, Jankowski R, Gueant JL, Houlgatte R. Integrative genomics analysis of nasal intestinal-type adenocarcinomas demonstrates the major role of CACNA1C and paves the way for a simple diagnostic tool in male woodworkers. Clin Epigenet. 2021;13(1):179.

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, Watson A, Castro VL, Cheung W, Chen SH, Watkins D, et al. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet. 2017;26(15):2838–49.

Zgheib R, Battaglia-Hsu SF, Hergalant S, Quere M, Alberto JM, Chery C, Rouyer P, Gauchotte G, Gueant JL, Namour F. Folate can promote the methionine-dependent reprogramming of glioblastoma cells towards pluripotency. Cell Death Dis. 2019;10(8):596.

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.

Zhang X, Chen Q, Song Y, Guo P, Wang Y, Luo S, Zhang Y, Zhou C, Li D, Chen Y, et al. Epimutation of MMACHC compound to a genetic mutation in cblC cases. Mol Genet Genomic Med. 2021;9(6):e1625.

Gueant JL, Siblini Y, Chery C, Schmitt G, Gueant-Rodriguez RM, Coelho D, Watkins D, Rosenblatt DS, Oussalah A. Epimutation in inherited metabolic disorders: the influence of aberrant transcription in adjacent genes. Hum Genet 2022.

Huemer M, Diodato D, Schwahn B, Schiff M, Bandeira A, Benoist JF, Burlina A, Cerone R, Couce ML, Garcia-Cazorla A, et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis. 2017;40(1):21–48.

Ledgerwood EC, Marshall JW, Weijman JF. The role of peroxiredoxin 1 in redox sensing and transducing. Arch Biochem Biophys. 2017;617:60–7.

Shau H, Gupta RK, Golub SH. Identification of a natural killer enhancing factor (NKEF) from human erythroid cells. Cell Immunol. 1993;147(1):1–11.

Wen ST, Van Etten RA. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev. 1997;11(19):2456–67.

Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003;424(6948):561–5.

Egler RA, Fernandes E, Rothermund K, Sereika S, de Souza-Pinto N, Jaruga P, Dizdaroglu M, Prochownik EV. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene. 2005;24(54):8038–50.

Rosok O, Pedeutour F, Ree AH, Aasheim HC. Identification and characterization of TESK2, a novel member of the LIMK/TESK family of protein kinases, predominantly expressed in testis. Genomics. 1999;61(1):44–54.

Singh M, Venugopal C, Tokar T, McFarlane N, Subapanditha MK, Qazi M, Bakhshinyan D, Vora P, Murty NK, Jurisica I, et al. Therapeutic targeting of the premetastatic stage in human lung-to-brain metastasis. Cancer Res. 2018;78(17):5124–34.

Toshima J, Toshima JY, Takeuchi K, Mori R, Mizuno K. Cofilin phosphorylation and actin reorganization activities of testicular protein kinase 2 and its predominant expression in testicular Sertoli cells. J Biol Chem. 2001;276(33):31449–58.

Kawauchi K, Tan WW, Araki K, Abu Bakar FB, Kim M, Fujita H, Hirata H, Sawada Y. p130Cas-dependent actin remodelling regulates myogenic differentiation. Biochem J. 2012;445(3):323–32.

Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom. 2014;13(2):397–406.

Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003;23(12):4207–18.

Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, Akalin A, Schubeler D. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520(7546):243–7.

McDaniel SL, Strahl BD. Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci. 2017;74(18):3317–34.

Deltas C. Digenic inheritance and genetic modifiers. Clin Genet. 2018;93(3):429–38.

Garg P, Jadhav B, Rodriguez OL, Patel N, Martin-Trujillo A, Jain M, Metsu S, Olsen H, Paten B, Ritz B, et al. A survey of rare epigenetic variation in 23,116 human genomes identifies disease-relevant epivariations and CGG expansions. Am J Hum Genet. 2020;107(4):654–69.

Mulder RH, Neumann A, Cecil CAM, Walton E, Houtepen LC, Simpkin AJ, Rijlaarsdam J, Heijmans BT, Gaunt TR, Felix JF, et al. Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence. Hum Mol Genet. 2021;30(1):119–34.

Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F, Gelernter J, Kaufman J. Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med. 2013;44(2):101–7.

Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31(2):142–7.

Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M, Morsey BM, Swindells S, Shen H, Ng CT, et al. Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell. 2016;62(2):157–68.