Phân tích biểu genome của các loại tế bào máu riêng lẻ tiết lộ dấu hiệu hút thuốc B cell cực kỳ cụ thể và liên kết với nguy cơ bệnh tật

Springer Science and Business Media LLC - Tập 15 - Trang 1-20 - 2023
Xuting Wang1, Michelle R. Campbell1, Hye-Youn Cho1, Gary S. Pittman1, Suzanne N. Martos1, Douglas A. Bell1
1Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA

Tóm tắt

Hút thuốc lá làm thay đổi hồ sơ methyl hóa DNA của các tế bào miễn dịch, điều này có thể góp phần vào một số cơ chế bệnh sinh của các bệnh liên quan đến smoking. Để liên kết các hiệu ứng di truyền điều chỉnh bởi hút thuốc trong các loại tế bào miễn dịch cụ thể với nguy cơ bệnh tật, chúng tôi đã tách rời sáu kiểu phụ bạch cầu, bao gồm CD14+ tế bào đơn nhân, CD15+ bạch cầu hạt, CD19+ tế bào B, CD4+ tế bào T, CD8+ tế bào T, và CD56+ tế bào giết tự nhiên, từ máu toàn phần của 67 người trưởng thành khỏe mạnh hút thuốc và 74 người không hút thuốc để tiến hành nghiên cứu liên kết toàn bộ genome (EWAS) sử dụng các mảng methyl hóa Illumina 450k và EPIC. Số lượng các vị trí methyl hóa khác biệt liên quan đến hút thuốc (smCpGs) với độ ý nghĩa toàn genome (p < 1.2 × 10−7) thay đổi rộng rãi giữa các loại tế bào, từ 5 smCpGs trong tế bào T CD8+ đến 111 smCpGs trong tế bào B CD19+. Chúng tôi phát hiện các hiệu ứng hút thuốc độc nhất ở mỗi loại tế bào, một số trong đó không rõ ràng trong máu toàn phần. Việc phân tích đặt cược dựa trên methyl hóa để ước tính các kiểu phụ tế bào B cho thấy rằng những người hút thuốc có 7.2% (p = 0.033) ít tế bào B non naïve hơn. Việc điều chỉnh tỷ lệ tế bào B naïve và tế bào B ghi nhớ trong EWAS và RNA-seq cho phép xác định các gen giàu có cho các con đường tín hiệu cytokine liên quan đến kích hoạt tế bào B, phản ứng Th1/Th2, và các bệnh ung thư huyết học. Tích hợp với các bộ dữ liệu công cộng quy mô lớn, 62 smCpGs nằm trong số các CpGs liên quan đến các EWAS có liên quan đến sức khỏe. Hơn nữa, 74 smCpGs có những biến thể dị hợp tử gen số lượng chính xác (SNPs) có thể tái tạo được, mà hoàn toàn ràng buộc với các SNP trong nghiên cứu liên kết toàn bộ genome, gắn liền với chức năng phổi, nguy cơ bệnh tật, và các đặc điểm khác. Chúng tôi quan sát các smCpGs riêng biệt theo chủng loại tế bào máu, sự chuyển đổi từ tế bào B non naïve sang ghi nhớ, và qua việc tích hợp các bộ dữ liệu toàn bộ genome, chúng tôi đã xác định các liên kết tiềm năng của chúng với nguy cơ bệnh tật và các đặc điểm sức khỏe.

Từ khóa

#hút thuốc #methyl hóa DNA #tế bào miễn dịch #nguy cơ bệnh tật #nghiên cứu liên kết toàn bộ genome

Tài liệu tham khảo

Stampfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol. 2009;9(5):377–84. Phillips DH, Hewer A, Martin CN, Garner RC, King MM. Correlation of DNA adduct levels in human lung with cigarette smoking. Nature. 1988;336(6201):790–2. Jones IM, Moore DH, Thomas CB, Thompson CL, Strout CL, Burkhart-Schultz K. Factors affecting HPRT mutant frequency in T-lymphocytes of smokers and nonsmokers. Cancer Epidemiol Biomark Prevent Publ Am Assoc Cancer Res Cospons Am Soc Prevent Oncol. 1993;2(3):249–60. Bell DA, Liu Y, Cortopassi GA. Occurrence of Bcl-2 oncogene translocation with increased frequency in the peripheral blood of heavy smokers. J Natl Cancer Inst. 1995;87(3):223–4. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and P53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435–51. Breton CV, Siegmund KD, Joubert BR, Wang X, Qui W, Carey V, et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS ONE. 2014;9(6):e99716. Dogan MV, Shields B, Cutrona C, Gao L, Gibbons FX, Simons R, et al. The effect of smoking on DNA methylation of peripheral blood mononuclear cells from African American Women. BMC Genomics. 2014;15(151):1471–2164. Elliott HR, Tillin T, Mcardle WL, Ho K, Duggirala A, Frayling TM, et al. Differences in smoking associated DNA Methylation patterns in South Asians And Europeans. Clin Epigenet. 2014;6(1):1868–7083. Flanagan JM, Brook MN, Orr N, Tomczyk K, Coulson P, Fletcher O, et al. Temporal stability and determinants of white blood cell DNA methylation in the breakthrough generations study. Cancer Epidemiol Biomark Prev. 2015;24(1):221–9. Harlid S, Xu Z, Panduri V, Sandler DP, Taylor JA. CpG sites associated with cigarette smoking: analysis of epigenome-wide data from the Sister Study. Environ Health Perspect. 2014;122(7):673–8. Sun YV, Smith AK, Conneely KN, Chang Q, Li W, Lazarus A, et al. Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum Genet. 2013;132(9):1027–37. Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet. 2012;21(13):3073–82. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS ONE. 2013;8(5):e63812. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450k epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31. Tsaprouni LG, Yang TP, Bell J, Dick KJ, Kanoni S, Nisbet J, et al. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics. 2014;9(10):1382–96. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477–81. Smith MR, Kinmonth AL, Luben RN, Bingham S, Day NE, Wareham NJ, et al. Smoking status and differential white cell count in men and women in the Epic-Norfolk population. Atherosclerosis. 2003;169(2):331–7. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13:86. Wiencke JK, Butler R, Hsuang G, Eliot M, Kim S, Sepulveda MA, Siegel D, Houseman EA, Kelsey KT. The DNA methylation profile of activated human natural killer cells. Epigenetics. 2016;11(5):363–80. Adalsteinsson BT, Gudnason H, Aspelund T, Harris TB, Launer LJ, Eiriksdottir G, et al. Heterogeneity in white blood cells has potential to confound DNA methylation measurements. PLoS ONE. 2012;7(10):E46705. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7(7):E41361. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics. 2014;30(10):1431–9. Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation of disease-omics. PLoS Genet. 2016;12(6):1006105. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31. Koestler DC, Jones MJ, Usset J, Christensen BC, Butler RA, Kobor MS, et al. Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (Idol). BMC Bioinform. 2016;17:120. Kim S, Eliot M, Koestler DC, Houseman EA, Wetmur JG, Wiencke JK, et al. Enlarged leukocyte referent libraries can explain additional variance in blood-based epigenome-Wide Association Studies. Epigenomics. 2016;8(9):1185–92. Reynolds LM, Wan M, Ding J, Taylor JR, Lohman K, Su D, et al. DNA methylation of the aryl hydrocarbon receptor repressor associations with cigarette smoking and subclinical atherosclerosis. Circ Cardiovasc Genet. 2015;8:707–16. Wan M, Bennett BD, Pittman GS, Campbell MR, Reynolds LM, Porter DK, et al. Identification of smoking-associated differentially methylated regions using reduced representation bisulfite sequencing and cell type-specific enhancer activation and gene expression. Environ Health Perspect. 2018;126(4):047015. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. Salas LA, Zhang Z, Koestler DC, Butler RA, Hansen HM, Molinaro AM, et al. Enhanced cell deconvolution of peripheral blood using dna methylation for high-resolution immune profiling. Nat Commun. 2022;13(1):761. Fox J, Weisberg S. An R companion to applied regression. Thousand Oaks: Sage Publications; 2011. p. 449. Philibert RA, Beach SR, Lei MK, Brody GH. Changes in Dna methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Clin Epigenet. 2013;5(1):19. Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, et al. Tobacco smoking-associated genome-wide DNA methylation changes in the epic study. Epigenomics. 2016;8(5):599–618. Besingi W, Johansson A. Smoke-related DNA methylation changes in the etiology of human disease. Hum Mol Genet. 2014;23(9):2290–7. Dugue PA, Jung CH, Joo JE, Wang X, Wong EM, Makalic E, et al. Smoking and blood DNA methylation: an epigenome-wide association study and assessment of reversibility. Epigenetics. 2020;15(4):358–68. Guida F, Sandanger TM, Castagne R, Campanella G, Polidoro S, Palli D, et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum Mol Genet. 2015;24(8):2349–59. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9(5):436–47. Sikdar S, Joehanes R, Joubert BR, Xu CJ, Vives-Usano M, Rezwan FI, et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics. 2019;11(13):1487–500. Wilson R, Wahl S, Pfeiffer L, Ward-Caviness CK, Kunze S, Kretschmer A, et al. The dynamics of smoking-related disturbed methylation: a two time-point study of methylation change in smokers, non-smokers and former smokers. BMC Genomics. 2017;18(1):805. Su D, Wang X, Campbell MR, Porter DK, Pittman GS, Bennett BD, et al. Distinct epigenetic effects of tobacco smoking in whole blood and among leukocyte subtypes. PLoS ONE. 2016;11(12):E0166486. Breeze CE, Reynolds AP, Van Dongen J, Dunham I, Lazar J, Neph S, et al. Eforge V2.0: updated analysis of cell type-specific signal in epigenomic data. Bioinformatics. 2019;35(22):4767–9. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. Battram T, Yousefi P, Suderman M. The EWAS catalog: a database of epigenome-wide association studies. Wellcome Open Res. 2022;7:41. Xiong Z, Yang F, Li M, Ma Y, Zhao W, Wang G, et al. EWAS open platform: integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic Acids Res. 2022;50(D1):D1004–9. Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet. 2017;49(1):131–8. Huan T, Joehanes R, Song C, Peng F, Guo Y, Mendelson M, et al. Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nat Commun. 2019;10(1):4267. Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun. 2018;9(1):918. Hannon E, Gorrie-Stone TJ, Smart MC, Burrage J, Hughes A, Bao Y, et al. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am J Hum Genet. 2018;103(5):654–65. Yao C, Joehanes R, Wilson R, Tanaka T, Ferrucci L, Kretschmer A, et al. Epigenome-wide association study of whole blood gene expression in Framingham Heart Study participants provides molecular insight into the potential role of CHRNA5 In cigarette smoking-related lung diseases. Clin Epigenet. 2021;13(1):60. Lloyd-Jones LR, Holloway A, Mcrae A, Yang J, Small K, Zhao J, et al. The Genetic architecture of gene expression in peripheral blood. Am J Hum Genet. 2017;100(2):371. Vosa U, et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Biorxiv. 2018. Cooper Md. The early history of B cells. Nat Rev Immunol. 2015;15(3):191–7. Mcnab F, Mayer-Barber K, Sher A, Wack A, O’garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103. Perkins ND. Integrating cell-signalling pathways with Nf-kappab And Ikk function. Nat Rev Mol Cell Biol. 2007;8(1):49–62. Wuerzberger-Davis SM, Chen Y, Yang DT, Kearns JD, Bates PW, Lynch C, et al. Nuclear export of the NF-κB inhibitor IκBα is required for proper B cell and secondary lymphoid tissue formation. Immunity. 2011;34(2):188–200. Chou WC, Levy DE, Lee CK. Stat3 positively regulates an early step in B-cell development. Blood. 2006;108(9):3005–11. Clark MR, Mandal M, Ochiai K, Singh H. Orchestrating B cell lymphopoiesis through interplay of Il-7 receptor and pre-B Cell receptor signalling. Nat Rev Immunol. 2014;14(2):69–80. Junttila IS. Tuning the cytokine responses: an update on interleukin (Il)-4 and Il-13 receptor complexes. Front Immunol. 2018;9:888. Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat Rev Immunol. 2010;10(10):683–7. Kuchen S, Robbins R, Sims GP, Sheng C, Phillips TM, Lipsky PE, et al. Essential role of Il-21 in B cell activation, expansion, and plasma cell generation during Cd4+ T cell-B cell collaboration. J Immunol. 2007;179(9):5886–96. Vaidyanathan B, Chaudhry A, Yewdell WT, Angeletti D, Yen WF, Wheatley AK, et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. J Exp Med. 2017;214(1):197–208. Moroney JB, Vasudev A, Pertsemlidis A, Zan H, Casali P. Integrative transcriptome and chromatin landscape analysis reveals distinct epigenetic regulations in human memory B cells. Nat Commun. 2020;11(1):5435. Gazit R, Garrison BS, Rao TN, Shay T, Costello J, Ericson J, et al. Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells. Stem Cell Reports. 2013;1(3):266–80. Bauer M, Fink B, Thurmann L, Eszlinger M, Herberth G, Lehmann I. Tobacco smoking differently influences cell types of the innate and adaptive immune system-indications from CpG site methylation. Clin Epigenet. 2015;7:83. Andersen AM, Lei MK, Beach SRH, Philibert RA. Inflammatory biomarker relationships with helper T Cell Gpr15 expression and cannabis and tobacco smoking. J Psychosom Res. 2021;141:110326. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. Fortin JP, Triche TJ Jr, Hansen KD. Preprocessing, normalization and integration of the illumina humanmethylationepic array with minfi. Bioinformatics. 2017;33(4):558–60. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. Champ: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–30. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in illumina infinium 450 K DNA methylation data. Bioinformatics. 2013;29(2):189–96. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3. Nordlund J, Backlin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 2013;14(9):R105. Buniello A, Macarthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–12. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet. 2019;51(3):481–93.