Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Di truyền học biểu sinh của ung thư biểu mô tế bào gan
Tóm tắt
Trong những năm gần đây, nghiên cứu di truyền quy mô lớn và các nghiên cứu toàn bộ bộ gen sử dụng các công cụ di truyền toàn diện đã định hình lại sự hiểu biết của chúng ta về sự tiến hóa và hiện tượng không đồng nhất của ung thư. Ung thư biểu mô tế bào gan, là một trong những loại ung thư chết người nhất trên thế giới, đã được xác định rõ ràng như một bệnh lý của bộ gen với nhiều những sai lệch di truyền và biểu sinh trong quá trình sinh ung thư gan. Do đó, việc hiểu sâu sắc về di truyền học biểu sinh trong các mẫu ung thư và sinh thiết có thể hữu ích trong môi trường lâm sàng cho việc phân loại phân tử, dự đoán kết quả, và dự đoán phản ứng điều trị. Trong bài tổng quan này, chúng tôi trình bày một cuộc thảo luận ngắn gọn về những tiến bộ gần đây trong lĩnh vực di truyền học biểu sinh của ung thư gan và một số công trình hiện tại góp phần vào sự phát triển của liệu pháp điều trị ung thư gan.
Từ khóa
#di truyền học biểu sinh #ung thư gan #ung thư biểu mô tế bào gan #sinh thiết #phân loại phân tử #dự đoán kết quả điều trịTài liệu tham khảo
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA A Cancer Journal for Clinicians 65:87–108
Bosch FX, Ribes J, Díaz M, Cléries R (2004) Primary liver cancer: Worldwide incidence and trends. Gastroenterology 127:S5–S16
Sadikovic B, Al-Romiah K, Squire JA, Zielenska M (2008) Cause and consequences of genetic and epigenetic alterations in human cancer. Current Genomics 9:394–408
Wilson CL, Mann DA, Borthwick LA (2017) Epigenetic reprogramming in liver fibrosis and cancer. Advanced Drug Delivery Reviews 121:124–132
Wahid B, Ali A, Rafique S, Idrees M (2017) New insights into the epigenetics of hepatocellular carcinoma. BioMed Research International 2017:1609575
Bhat V, Srinathan S, Pasini E, Angeli M, Chen E, Baciu C, Bhat M (2018) Epigenetic basis of hepatocellular carcinoma: A network-based integrative meta-analysis. World Journal of Hepatology 10:155–165
Stallcup MR (2001) Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20:3014
Bestor TH (2000) The DNA methyltransferases of mammals. Human Molecular Genetics 9:2395–2402
Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics 19:219
Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nature Reviews Molecular Cell Biology 10:192
Song J, Teplova M, Ishibe-Murakami S, Patel DJ (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335:709–712
Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257
Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nature Reviews Genetics 12:529
Issa J-P (2004) CpG island methylator phenotype in cancer. Nature Reviews Cancer 4:988
Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455
Tao R, Li J, Xin J, Wu J, Guo J, Zhang L, Jiang L et al (2011) Methylation profile of single hepatocytes derived from hepatitis B virus-related hepatocellular carcinoma. PLoS ONE 6:e19862
Shen J, Wang S, Zhang YJ, Kappil M, Wu HC, Kibriya MG, Wang Q et al (2012) Genome-wide DNA methylation profiles in hepatocellular carcinoma. Hepatology 55:1799–1808
Song M-A, Tiirikainen M, Kwee S, Okimoto G, Yu H, Wong LL (2013) Elucidating the landscape of aberrant DNA methylation in hepatocellular carcinoma. PLoS ONE 8:e55761
Revill K, Wang T, Lachenmayer A, Kojima K, Harrington A, Li J, Hoshida Y et al (2013) Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterology 145(1424–1435):e1425
Shen J, Wang S, Zhang Y-J, Wu H-C, Kibriya MG, Jasmine F, Ahsan H et al (2013) Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using infinium humanmethylation 450 BeadChips. Epigenetics 8:34–43
Gentilini D, Garagnani P, Pisoni S, Bacalini MG, Calzari L, Mari D, Vitale G et al (2015) Stochastic epigenetic mutations (DNA methylation) increase exponentially in human aging and correlate with X chromosome inactivation skewing in females. Aging (Albany NY) 7:568
Gentilini D, Scala S, Gaudenzi G, Garagnani P, Capri M, Cescon M, Grazi GL et al (2017) Epigenome-wide association study in hepatocellular carcinoma: Identification of stochastic epigenetic mutations through an innovative statistical approach. Oncotarget 8:41890
Hama N, Totoki Y, Miura F, Tatsuno K, Saito-Adachi M, Nakamura H, Arai Y et al (2018) Epigenetic landscape influences the liver cancer genome architecture. Nature Communications 9:1643
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research 22:1775–1789
Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25:2537
Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 133:647–658
Xu G, Zhang Y, Wei J, Jia W, Ge Z, Zhang Z, Liu X (2013) MicroRNA-21 promotes hepatocellular carcinoma HepG2 cell proliferation through repression of mitogen-activated protein kinase-kinase 3. BMC Cancer 13:469
Garofalo M, Di Leva G, Romano G, Nuovo G, Suh S-S, Ngankeu A, Taccioli C et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16:498–509
Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V et al (2010) miR-221 overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences 107:264–269
Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL et al (2009) MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clinical Cancer Research 15:5073–5081
Zhang Y, Takahashi S, Tasaka A, Yoshima T, Ochi H, Chayama K (2013) Involvement of microRNA-224 in cell proliferation, migration, invasion, and anti-apoptosis in hepatocellular carcinoma. Journal of Gastroenterology and Hepatology 28:565–575
Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, Tantoso E et al (2008) Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. Journal of Biological Chemistry 283:13205–13215
Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, Zucman-Rossi J (2008) MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 47:1955–1963
Lin L, Lu B, Yu J, Liu W, Zhou A (2016) Serum miR-224 as a biomarker for detection of hepatocellular carcinoma at early stage. Clinics and Research in Hepatology and Gastroenterology 40:397–404
Zhu Y, Lu Y, Zhang Q, Liu J-J, Li T-J, Yang J-R, Zeng C et al (2011) MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Research 40:4615–4625
Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ, Ye QH et al (2014) MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology 59:1874–1885
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Current Biology 12:735–739
Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST et al (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. Journal of Cellular Biochemistry 99:671–678
Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A (2008) miR-122, a paradigm for the role of microRNAs in the liver. Journal of Hepatology 48:648–656
Tzur G, Levy A, Meiri E, Barad O, Spector Y, Bentwich Z, Mizrahi L et al (2008) MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS ONE 3:e3726
Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C et al (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and maydownregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology 1:106–113
Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS (2009) Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28:3526
Papaconstantinou I, Karakatsanis A, Gazouli M, Polymeneas G, Voros D (2012) The role of microRNAs in liver cancer. European Journal of Gastroenterology and Hepatology 24:223–228
Bai S, Nasser MW, Wang B, Hsu S-H, Datta J, Kutay H, Yadav A et al (2009) MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. Journal of Biological Chemistry 284:32015–32027
Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, Pollutri D et al (2010) MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Research 70:5184–5193
Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, Chen Z et al (2015) MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology 62:1132–1144
Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L et al (2011) Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19:232–243
Chen S, Ma D, Chen Q, Zhang J, Tian Y, Wang Z, Cai H et al (2017) MicroRNA-200a inhibits cell growth and metastasis by targeting Foxa2 in hepatocellular carcinoma. Journal of Cancer. 8:617
Yang X, Wang J, Qu S, Zhang H, Ruan B, Gao Y, Ma B et al (2015) MicroRNA-200a suppresses metastatic potential of side population cells in human hepatocellular carcinoma by decreasing ZEB2. Oncotarget 6:7918
Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR et al (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132:330–342
Hämmerle M, Gutschner T, Uckelmann H, Ozgur S, Fiskin E, Gross M, Skawran B et al (2013) Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology 58:1703–1712
Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Research 38:5366–5383
Lu Z, Xiao Z, Liu F, Cui M, Li W, Yang Z, Li J et al (2016) Long non-coding RNA HULC promotes tumor angiogenesis in liver cancer by up-regulating sphingosine kinase 1 (SPHK1). Oncotarget 7:241
Li S-P, Xu H-X, Yu Y, He J-D, Wang Z, Xu Y-J, Wang C-Y et al (2016) LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget 7:42431
Wu L, Murat P, Matak-Vinkovic D, Murrell A, Balasubramanian S (2013) Binding interactions between long noncoding RNA HOTAIR and PRC2 proteins. Biochemistry 52:9519–9527
Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693
Geng Y, Xie S, Li Q, Ma J, Wang G (2011) Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. Journal of International Medical Research 39:2119–2128
Yang Z, Zhou L, Wu L-M, Lai M-C, Xie H-Y, Zhang F, Zheng S-S (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Annals of Surgical Oncology 18:1243–1250
Fujisaka Y, Iwata T, Tamai K, Nakamura M, Mochizuki M, Shibuya R, Yamaguchi K et al (2018) Long non-coding RNA HOTAIR up-regulates chemokine (C-C motif) ligand 2 and promotes proliferation of macrophages and myeloid-derived suppressor cells in hepatocellular carcinoma cell lines. Oncology Letters 15:509–514
Längst G, Manelyte L (2015) Chromatin remodelers: From function to dysfunction. Genes 6:299–324
Chen Y, Lin MC, Yao H, Wang H, Zhang AQ, Yu J, Hui CK et al (2007) Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology. 46:200–208
Liu H, Liu Y, Liu W, Zhang W, Xu J (2015) EZH2-mediated loss of miR-622 determines CXCR62 activation in hepatocellular carcinoma. Nature Communications 6:8494
Bugide S, Green MR, Wajapeyee N (2018) Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proceedings of the National Academy of Sciences 115:E3509–E3518
Huang J, Deng Q, Wang Q, Li K-Y, Dai J-H, Li N, Zhu Z-D et al (2012) Exome sequencing of hepatitis B virus–associated hepatocellular carcinoma. Nature Genetics 44:1117
Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J et al (2012) Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genetics 44:694
Wu JN, Roberts CW (2013) ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discovery 3:35–43
Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, Gopal P et al (2017) Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell 32(574–589):e576
Oba A, Shimada S, Akiyama Y, Nishikawaji T, Mogushi K, Ito H, Matsumura S et al (2017) ARID2 modulates DNA damage response in human hepatocellular carcinoma cells. Journal of Hepatology 66:942–951
Duan Y, Tian L, Gao Q, Liang L, Zhang W, Yang Y, Zheng Y et al (2016) Chromatin remodeling gene ARID2 targets cyclin D1 and cyclin E1 to suppress hepatoma cell progression. Oncotarget 7:45863
Peterson CL, Laniel MA (2004) Histones and histone modifications. Current Biology 14:R546–R551
Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: Patterns and paradigms. Nature Reviews Genetics 10:295–304
Sawan C, Herceg Z (2010) Histone modifications and cancer. Advances in Genetics 70:57–85
Chervona Y, Costa M (2012) Histone modifications and cancer: Biomarkers of prognosis? American Journal of Cancer Research 2:589–597
Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annual Review of Biochemistry 70:81–120
Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Molecular Oncology 1:19–25
Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics 10:32
Wu L-M, Yang Z, Zhou L, Zhang F, Xie H-Y, Feng X-W, Wu J et al (2010) Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in HBV-associated hepatocellular carcinoma. PLoS ONE 5:e14460
Ler SY, Leung CHW, Khin LW, Lu GD, Salto-Tellez M, Hartman M, Iau PTC et al (2015) HDAC1 and HDAC2 independently predict mortality in hepatocellular carcinoma by a competing risk regression model in a Southeast Asian population. Oncology Reports. 34:2238–2250
Yang J, Jin X, Yan Y, Shao Y, Pan Y, Roberts LR, Zhang J et al (2017) Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. Scientific Reports 7:43864
Lee Y-H, Seo D, Choi K-J, Andersen JB, Won M-A, Kitade M, Gómez-Quiroz LE et al (2014) Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Research 74(17):4752–4761
Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Nakagama H, Ochiya T (2018) Differentiation therapy by epigenetic reconditioning exerts antitumor effects on liver cancer cells. Molecular Therapy 26(7):1840–1854
Liu J, Liu Y, Meng L, Liu K, Ji B (2017) Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncology Reports 38:899–907
Mei Q, Chen M, Lu X, Li X, Duan F, Wang M, Luo G et al (2015) An open-label, single-arm, phase I/II study of lower-dose decitabine based therapy in patients with advanced hepatocellular carcinoma. Oncotarget 6:16698–16711
Fan H, Lu X, Wang X, Liu Y, Guo B, Zhang Y, Zhang W et al (2014) Low-dose decitabine-based chemoimmunotherapy for patients with refractory advanced solid tumors: A phase I/II report. Journal of Immunology Research 2014:371087
Raynal NJ, Issa PJ (2016) DNA methyltransferase inhibitors. Drug discovery in cancer epigenetics. Academic Press, Boston, pp 169–190
Griffiths EA, Choy G, Redkar S, Taverna P, Azab M, Karpf AR (2013) SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs of the Future 38:535–543
Jueliger S, Lyons J, Azab M, Taverna P (2012) 465 SGI-110, a novel second generation DNa hypomethylating agent, enhances sorafenib activity and alters methylation signature of HCC cell lines. European Journal of Cancer 48:144
Jueliger S, Lyons J, Cannito S, Pata I, Pata P, Shkolnaya M, Lo Re O et al (2016) Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics 11:709–720
El-Khoueiry A, Mulcahy MF, Bekaii-Saab T, Kim R, Denlinger C, Goel R, Gupta S et al (2015) Abstract 2947: Pharmacodynamic (PD) and pharmacokinetic (PK) results of the second-generation hypomethylating agent, SGI-110, in patients with hepatocellular carcinoma (HCC) after progression on sorafenib. Cancer Research 75:2947
Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N (2015) Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Molecular Oncology 9:1799–1814
Di Fazio P, Schneider-Stock R, Neureiter D, Okamoto K, Wissniowski T, Gahr S, Quint K et al (2010) The pan-deacetylase inhibitor panobinostat inhibits growth of hepatocellular carcinoma models by alternative pathways of apoptosis. Cellular Oncology 32:285–300
Di Fazio P, Montalbano R, Quint K, Alinger B, Kemmerling R, Kiesslich T, Ocker M et al (2013) The pan-deacetylase inhibitor panobinostat modulates the expression of epithelial-mesenchymal transition markers in hepatocellular carcinoma models. Oncology Letters 5:127–134
Gahr S, Mayr C, Kiesslich T, Illig R, Neureiter D, Alinger B, Ganslmayer M et al (2015) The pan-deacetylase inhibitor panobinostat affects angiogenesis in hepatocellular carcinoma models via modulation of CTGF expression. International Journal of Oncology 47:963–970
Ma BBY, Sung F, Tao Q, Poon FF, Lui VW, Yeo W, Chan SL et al (2010) The preclinical activity of the histone deacetylase inhibitor PXD101 (belinostat) in hepatocellular carcinoma cell lines. Investigational New Drugs 28:107–114
Yeo W, Chung HC, Chan SL, Wang LZ, Lim R, Picus J, Boyer M et al (2012) Epigenetic therapy using belinostat for patients with unresectable hepatocellular carcinoma: A multicenter phase I/II study with biomarker and pharmacokinetic analysis of tumors from patients in the mayo phase II consortium and the cancer therapeutics research group. Journal of Clinical Oncology 30:3361–3367
Bitzer M, Horger M, Giannini EG, Ganten TM, Wörns MA, Siveke JT, Dollinger MM et al (2016) Resminostat plus sorafenib as second-line therapy of advanced hepatocellular carcinoma—the SHELTER study. Journal of Hepatology 65:280–288
Fu M, Shi W, Li Z, Liu H (2016) Activation of mPTP-dependent mitochondrial apoptosis pathway by a novel pan HDAC inhibitor resminostat in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications 477:527–533
Soukupova J, Bertran E, Peñuelas-Haro I, Urdiroz-Urricelqui U, Borgman M, Kohlhof H, Fabregat I (2017) Resminostat induces changes in epithelial plasticity of hepatocellular carcinoma cells and sensitizes them to sorafenib-induced apoptosis. Oncotarget 8:110367–110379
Lai C-J, Bao R, Tao X, Wang J, Atoyan R, Qu H, Wang D-G et al (2010) CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2. Exerts Potent Anticancer Activity. Cancer Research 70:3647
Fu S, Nemunaitis JJ, Bessudo A, Bauman JE, Hamid O, Witta SE, Dy GK et al (2012) A phase Ib study of CUDC-101, a multitargeted inhibitor of EGFR, HER2, and HDAC, in patients with advanced head and neck, gastric, breast, liver, and non-small cell lung cancer. Journal of Clinical Oncology 30:e13101
Callegari E, Elamin Bahaeldin K, Giannone F, Milazzo M, Altavilla G, Fornari F, Giacomelli L et al (2012) Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology 56:1025–1033
Moshiri F, Callegari E, D’Abundo L, Corrà F, Lupini L, Sabbioni S, Negrini M (2014) Inhibiting the oncogenic mir-221 by microRNA sponge: Toward microRNA-based therapeutics for hepatocellular carcinoma. Gastroenterology and Hepatology From Bed to Bench 7:43–54
Hsu S, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L et al (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. The Journal of Clinical Investigation. 122:2871–2883
Tsai W-C, Hsu S-D, Hsu C-S, Lai T-C, Chen S-J, Shen R, Huang Y et al (2012) MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. The Journal of Clinical Investigation 122:2884–2897
Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, Odenthal M (2007) MicroRNA gene expression profile of hepatitis C virus–associated hepatocellular carcinoma. Hepatology 47:1223–1232
Spaniel C, Honda M, Selitsky SR, Yamane D, Shimakami T, Kaneko S, Lanford RE et al (2013) microRNA-122 abundance in hepatocellular carcinoma and non-tumor liver tissue from japanese patients with persistent HCV versus HBV infection. PLoS ONE 8:e76867
Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ et al (2013) Treatment of HCV infection by targeting MicroRNA. New England Journal of Medicine 368:1685–1694
Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 327:198–201
van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A, Welzel TM, Zeuzem S et al (2014) Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Research 111:53–59
Ree MH, Meer AJ, Nuenen AC, Bruijne J, Ottosen S, Janssen HL, Kootstra NA et al (2016) Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Alimentary Pharmacology & Therapeutics 43:102–113
Qadir XV, Han C, Lu D, Zhang J, Wu T (2014) miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. The American Journal of Pathology 184:2355–2364
