Các mục tiêu di truyền biểu sinh của các thành phần dinh dưỡng sinh học trong phòng ngừa và điều trị ung thư

Springer Science and Business Media LLC - Tập 1 Số 3-4 - Trang 101-116 - 2010
Syed Musthapa Meeran1, Amiya Ahmed1, Trygve O. Tollefsbol1
1Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Campbell Hall 175, Birmingham, AL, 35294-1170, USA

Tóm tắt

Tóm tắt

Sự quan tâm ngày càng tăng về di truyền biểu sinh trong ung thư xuất phát từ việc các biến đổi biểu sinh có liên quan đến hầu hết mọi bước trong quá trình hình thành khối u. Thú vị hơn, các thay đổi biểu sinh là những thay đổi di truyền có thể đảo ngược, không do sự thay đổi trongchuỗi DNA mà có khả năng làm thay đổi biểu hiện gen. Các tác nhân từ chế độ ăn uống gồm nhiều thành phần sinh học có hoạt tính thường xuyên điều chỉnh các mục tiêu phân tử khác nhau liên quan đến hình thành khối u. Chúng tôi trình bày những bằng chứng cho thấy nhiều thành phần dinh dưỡng sinh học có thể can thiệp vào các mục tiêu biểu sinh khác nhau trong việc phòng ngừa và điều trị ung thư. Các tác nhân này bao gồm curcumin (nghệ), genistein (đậu nành), polyphenol trà (trà xanh), resveratrol (nho) và sulforaphane (rau cải). Những thành phần sinh học này làm thay đổi quá trình methyl hóa DNA và các biến đổi histone cần thiết cho việc kích hoạt hoặc tắt gen trong phòng ngừa và điều trị ung thư. Các thành phần sinh học điều hòa các biến đổi biểu sinh liên quan đến sự kích thích các gen ức chế khối u như p21 WAF1/CIP1 và ức chế các gen khuyến khích khối u như enzym nhân bản telomerase ở người trong quá trình hình thành khối u. Tại đây, chúng tôi trình bày những bằng chứng đáng kể cho thấy các thành phần sinh học và các mục tiêu biểu sinh của chúng có liên quan đến phòng ngừa và điều trị ung thư, điều này có thể tạo điều kiện cho việc khám phá và phát triển thuốc mới. Ngoài ra, những tiến bộ đáng kể trong việc hiểu biết về các cơ chế biểu sinh cơ bản cũng như sự phát triển nhanh chóng trong việc phát triển các công nghệ mới mạnh mẽ, chẳng hạn như các công nghệ phát hiện nhạy bén và định lượng các thay đổi biểu sinh và biểu genome trong sinh học ung thư, hứa hẹn những phương pháp biểu sinh mới trong việc phòng ngừa và điều trị ung thư.

Từ khóa


Tài liệu tham khảo

Acharya M, Sparreboom A, Venitz J, Figg W (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 68:917–932

Aggarwal B, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

Aggarwal B, Kumar A, Bharti A (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

Ahmad N, Feyes D, Nieminen A, Agarwal R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89:1881–1886

Athar M, Back J, Kopelovich L, Bickers D, Kim A (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486:95–102

Bacon JR, Williamson G, Garner RC, Lappin G, Langouet S, Bao Y (2003) Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2 cells and hepatocytes. Carcinogenesis 24:1903–1911

Balasubramanian S, Adhikary G, Eckert RL (2010) The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis 31:496–503

Balasubramanyam K, Varier R, Altaf M, Swaminathan V, Siddappa N, Ranga U, Kundu T (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279:51163–51171

Ballestar E, Wolffe A (2001) Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem 268:1–6

Barnes S (1995) Effect of genistein on in vitro and in vivo models of cancer. J Nutr 125:777S–783S

Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO (2008) Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem 103:509–519

Bestor T (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

Bhamre S, Sahoo D, Tibshirani R, Dill D, Brooks J (2009) Temporal changes in gene expression induced by sulforaphane in human prostate cancer cells. Prostate 69:181–190

Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila Pa) 2:409–418

Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3:e1759

Boily G, He XH, Pearce B, Jardine K, McBurney MW (2009) SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28:2882–2893

Bolden J, Peart M, Johnstone R (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

Bryant CS, Kumar S, Chamala S, Shah J, Pal J, Haider M, Seward S, Qazi AM, Morris R, Semaan A, Shammas MA, Steffes C, Potti RB, Prasad M, Weaver DW, Batchu RB (2010) Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Mol Cancer 9:47

Calin G, Sevignani C, Dumitru C, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce C (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G (2007) Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 101:427–433

Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12:87–97

Chiu J, Khan Z, Farhangkhoee H, Chakrabarti S (2009) Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition 25:964–972

Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69:583–592

Choudhuri S, Cui Y, Klaassen C (2010) Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol 245:378–393

Chu WF, Wu DM, Liu W, Wu LJ, Li DZ, Xu DY, Wang XF (2009) Sulforaphane induces G2-M arrest and apoptosis in high metastasis cell line of salivary gland adenoid cystic carcinoma. Oral Oncol 45:998–1004

Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P, Davidson NE, Talalay P, Kensler TW, Visvanathan K (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28:1485–1490

Croce C (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

Cui L, Miao J, Furuya T, Li X, Su XZ (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6:1219–1227

Dalvai M, Bystricky K (2010) The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 15:19–33

Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17:363–369

Dashwood R, Ho E (2008) Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr Rev 66(Suppl 1):S36–S38

Davis CD, Ross SA (2007) Dietary components impact histone modifications and cancer risk. Nutr Rev 65:88–94

Day J, Bauer A, DesBordes C, Zhuang Y, Kim B, Newton L, Nehra V, Forsee K, MacDonald R, Besch-Williford C, Huang T, Lubahn D (2002) Genistein alters methylation patterns in mice. J Nutr 132:2419S–2423S

Dinkova-Kostova AT, Fahey JW, Wade KL, Jenkins SN, Shapiro TA, Fuchs EJ, Kerns ML, Talalay P (2007) Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomark Prev 16:847–851

Druesne N, Pagniez A, Mayeur C, Thomas M, Cherbuy C, Duée P, Martel P, Chaumontet C (2004) Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 25:1227–1236

Ducasse M, Brown M (2006) Epigenetic aberrations and cancer. Mol Cancer 5:60

Eisenberg D, Davis R, Ettner S, Appel S, Wilkey S, Van Rompay M, Kessler R (1998) Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. JAMA 280:1569–1575

Ellis L, Atadja P, Johnstone R (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420

Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison C, Chan K, Marcucci G, Calin G, Huebner K, Croce C (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

Fang M, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang C (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

Fang M, Chen D, Sun Y, Jin Z, Christman J, Yang C (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11:7033–7041

Fang M, Chen D, Yang C (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137:223S–228S

Fassina G, Venè R, Morini M, Minghelli S, Benelli R, Noonan D, Albini A (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865–4873

Fraga M, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer N, Pérez-Rosado A, Calvo E, Lopez J, Cano A, Calasanz M, Colomer D, Piris M, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

Fu S, Kurzrock R (2010) Development of curcumin as an epigenetic agent. Cancer (in press)

Ganesan A, Nolan L, Crabb SJ, Packham G (2009) Epigenetic therapy: histone acetylation, DNA methylation and anti-cancer drug discovery. Curr Cancer Drug Targets 9:963–981

Gao Z, Xu Z, Hung MS, Lin YC, Wang T, Gong M, Zhi X, Jablon DM, You L (2009) Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res 29:2025–2030

Görisch S, Wachsmuth M, Tóth K, Lichter P, Rippe K (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118:5825–5834

Graham H (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350

Grønbaek K, Hother C, Jones P (2007) Epigenetic changes in cancer. APMIS 115:1039–1059

Gu Y, Zhu CF, Iwamoto H, Chen JS (2005) Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J Gastroenterol 11:6512–6517

Gu B, Ding Q, Xia G, Fang Z (2009) EGCG inhibits growth and induces apoptosis in renal cell carcinoma through TFPI-2 overexpression. Oncol Rep 21:635–640

Guerrero-Bosagna C, Sabat P, Valdovinos F, Valladares L, Clark S (2008) Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC Physiol 8:17

Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95

Guilleret I, Benhattar J (2004) Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines. Biochem Biophys Res Commun 325:1037–1043

Hebbes T, Thorne A, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402

Hellebrekers D, Griffioen A, van Engeland M (2007) Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta 1775:76–91

Herceg Z (2007) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22:91–103

Herman-Antosiewicz A, Xiao H, Lew KL, Singh SV (2007) Induction of p21 protein protects against sulforaphane-induced mitotic arrest in LNCaP human prostate cancer cell line. Mol Cancer Ther 6:1673–1681

Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

Ho E, Clarke JD, Dashwood RH (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139:2393–2396

Holliday R (1990) Mechanisms for the control of gene activity during development. Biol Rev Camb Philos Soc 65:431–471

Huh S, Bae S, Kim Y, Lee J, Namkoong S, Lee I, Kim S, Kim C, Ahn W (2004) Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol Oncol 94:760–768

Huo C, Yang H, Cui QC, Dou QP, Chan TH (2010) Proteasome inhibition in human breast cancer cells with high catechol-O-methyltransferase activity by green tea polyphenol EGCG analogs. Bioorg Med Chem 18:1252–1258

Issa JP (2008) Cancer prevention: epigenetics steps up to the plate. Cancer Prev Res (Phila Pa) 1:219–222

Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman E, Caldwell S, Napper A, Curtis R, DiStefano P, Fields S, Bedalov A, Kennedy B (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280:17038–17045

Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh L, Lee S, Leighton J, Patel H, Rahman A, Sridhara R, Wang Y, Pazdur R, FDA (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608

Kang SK, Cha SH, Jeon HG (2006) Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev 15:165–174

Kanwar J, Mohammad I, Yang H, Huo C, Chan TH, Dou QP (2010) Computational modeling of the potential interactions of the proteasome beta5 subunit and catechol-O-methyltransferase-resistant EGCG analogs. Int J Mol Med 26:209–215

Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99:647–654

Keum YS, Khor TO, Lin W, Shen G, Kwon KH, Barve A, Li W, Kong AN (2009) Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res 26:2324–2331

Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, Majid S, Igawa M, Dahiya R (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123:552–560

Kim D, Kim M, Kwon H (2003) Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 36:110–119

King-Batoon A, Leszczynska J, Klein C (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49:36–45

Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

Kraft TE, Parisotto D, Schempp C, Efferth T (2009) Fighting cancer with red wine? Molecular mechanisms of resveratrol. Crit Rev Food Sci Nutr 49:782–799

Lafon-Hughes L, Di Tomaso M, Méndez-Acuña L, Martínez-López W (2008) Chromatin-remodelling mechanisms in cancer. Mutat Res 658:191–214

Laird P (2005) Cancer epigenetics. Hum Mol Genet 14(Spec No 1):R65–R76

Landis-Piwowar KR, Huo C, Chen D, Milacic V, Shi G, Chan TH, Dou QP (2007) A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res 67:4303–4310

Landis-Piwowar KR, Milacic V, Dou QP (2008) Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. J Cell Biochem 105:514–523

Landis-Piwowar K, Chen D, Chan TH, Dou QP (2010) Inhibition of catechol-Omicron-methyltransferase activity in human breast cancer cells enhances the biological effect of the green tea polyphenol (-)-EGCG. Oncol Rep 24:563–569

Lea M, Randolph V, Lee J, desBordes C (2001) Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate. Int J Cancer 92:784–789

Lee W, Zhu B (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27:269–277

Lee S, Lee H, Kim J, Lee H, Jang J, Kang G (2003) Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol 163:1371–1378

Lee W, Shim J, Zhu B (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

Li Y, Tollefsbol T (2010) Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 17:2141–2151

Li LH, Wu LJ, Tashiro SI, Onodera S, Uchiumi F, Ikejima T (2007) Activation of the SIRT1 pathway and modulation of the cell cycle were involved in silymarin's protection against UV-induced A375-S2 cell apoptosis. J Asian Nat Prod Res 9:245–252

Li H, Liu C, de Couto G, Ouzounian M, Sun M, Wang A, Huang Y, He C, Shi Y, Chen X, Nghiem M, Liu Y, Chen M, Dawood F, Fukuoka M, Maekawa Y, Zhang L, Leask A, Ghosh A, Kirshenbaum L, Liu P (2008) Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 118:879–893

Li Y, Liu L, Andrews LG, Tollefsbol TO (2009a) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer 125:286–296

Li Y, VandenBoom Tn, Kong D, Wang Z, Ali S, Philip P, Sarkar F (2009b) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69:6704–6712

Li Y, Liu L, Tollefsbol TO (2010) Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J 24:1442–1453

Liang G, Tang A, Lin X, Li L, Zhang S, Huang Z, Tang H, Li QQ (2010) Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 37:111–123

Lin J, Liang Y (2000) Cancer chemoprevention by tea polyphenols. Proc Natl Sci Counc Repub China B 24:1–13

Liu H, Chen Y, Cui G, Zhou J (2005) Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol Sin 26:603–609

Liu PL, Tsai JR, Charles AL, Hwang JJ, Chou SH, Ping YH, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, Chong IW (2010) Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol Nutr Food Res 54:S196–S204

Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li L, Zhao H, Okino S, Place R, Pookot D, Dahiya R (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68:2736–2744

Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, Saini S, Tanaka Y, Dahiya AV, Khatri G, Dahiya R (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30:662–670

Mao QQ, Bai Y, Lin YW, Zheng XY, Qin J, Yang K, Xie LP (2010) Resveratrol confers resistance against taxol via induction of cell cycle arrest in human cancer cell lines. Mol Nutr Food Res (in press)

Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L (2006) Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2:169–174

Marsoni S, Damia G, Camboni G (2008) A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics 3:164–171

Meeran S, Katiyar S (2008) Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 13:2191–2202

Meeran S, Patel S, Tollefsbol T (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE 5:e11457

Meja K, Rajendrasozhan S, Adenuga D, Biswas S, Sundar I, Spooner G, Marwick J, Chakravarty P, Fletcher D, Whittaker P, Megson I, Kirkham P, Rahman I (2008) Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol 39:312–323

Mittal A, Piyathilake C, Hara Y, Katiyar S (2003) Exceptionally high protection of photocarcinogenesis by topical application of (–)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5:555–565

Moiseeva EP, Almeida GM, Jones GD, Manson MM (2007) Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol Cancer Ther 6:3071–3079

Mottet D, Castronovo V (2008) Histone deacetylases: target enzymes for cancer therapy. Clin Exp Metastasis 25:183–189

Morey Kinney SR, Zhang W, Pascual M, Greally JM, Gillard BM, Karasik E, Foster BA, Karpf AR (2009) Lack of evidence for green tea polyphenols as DNA methylation inhibitors in murine prostate. Cancer Prev Res (Phila Pa) 2:1065–1075

Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118:868–878

Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71:1698S–1702S, discussion 1703S-1694S

Murugan RS, Vinothini G, Hara Y, Nagini S (2009) Black tea polyphenols target matrix metalloproteinases, RECK, proangiogenic molecules and histone deacetylase in a rat hepatocarcinogenesis model. Anticancer Res 29:2301–2305

Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006a) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20:506–508

Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E (2006b) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27:811–819

Myzak M, Ho E, Dashwood R (2006c) Dietary agents as histone deacetylase inhibitors. Mol Carcinog 45:443–446

Myzak MC, Tong P, Dashwood WM, Dashwood RH, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232:227–234

Nair S, Hebbar V, Shen G, Gopalakrishnan A, Khor TO, Yu S, Xu C, Kong AN (2008) Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm Res 25:387–399

Nian H, Delage B, Ho E, Dashwood R (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50:213–221

Nihal M, Roelke CT, Wood GS (2010) Anti-melanoma effects of vorinostat in combination with polyphenolic antioxidant (-)-epigallocatechin-3-gallate (EGCG). Pharm Res 27:1103–1114

Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192:119–125

Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126:2520–2533

Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF (2010) Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr 140(9):1607–1614

Parker L, Taylor D, Kesterson J, Metzinger D, Gercel-Taylor C (2009) Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol 30:616–621

Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6:1013–1021

Plummer R, Vidal L, Griffin M, Lesley M, de Bono J, Coulthard S, Sludden J, Siu L, Chen E, Oza A, Reid G, McLeod A, Besterman J, Lee C, Judson I, Calvert H, Boddy A (2009) Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin Cancer Res 15:3177–3183

Pollack BP, Sapkota B, Boss JM (2009) Ultraviolet radiation-induced transcription is associated with gene-specific histone acetylation. Photochem Photobiol 85:652–662

Qin W, Zhu W, Shi H, Hewett JE, Ruhlen RL, MacDonald RS, Rottinghaus GE, Chen YC, Sauter ER (2009) Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer 61:238–244

Quante M, Heeg S, von Werder A, Goessel G, Fulda C, Doebele M, Nakagawa H, Beijersbergen R, Blum H, Opitz O (2005) Differential transcriptional regulation of human telomerase in a cellular model representing important genetic alterations in esophageal squamous carcinogenesis. Carcinogenesis 26:1879–1889

Raynal NJ, Charbonneau M, Momparler LF, Momparler RL (2008) Synergistic effect of 5-Aza-2'-deoxycytidine and genistein in combination against leukemia. Oncol Res 17:223–230

Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351

Sagara Y, Miyata Y, Nomata K, Hayashi T, Kanetake H (2010) Green tea polyphenol suppresses tumor invasion and angiogenesis in N-butyl-(-4-hydroxybutyl) nitrosamine-induced bladder cancer. Cancer Epidemiol 34:350–354

Saito Y, Jones P (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222

Sasamura H, Takahashi A, Yuan J, Kitamura H, Masumori N, Miyao N, Itoh N, Tsukamoto T (2004) Antiproliferative and antiangiogenic activities of genistein in human renal cell carcinoma. Urology 64:389–393

Seligson D, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani S (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

Shanafelt T, Call T, Zent C, LaPlant B, Bowen D, Roos M, Secreto C, Ghosh A, Kabat B, Lee M, Yang C, Jelinek D, Erlichman C, Kay N (2009) Phase I trial of daily oral polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J Clin Oncol 27:3808–3814

Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

Shishodia S, Chaturvedi M, Aggarwal B (2007) Role of curcumin in cancer therapy. Curr Probl Cancer 31:243–305

Singh AV, Franke AA, Blackburn GL, Zhou JR (2006) Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Res 66:1851–1858

Stefanska B, Rudnicka K, Bednarek A, Fabianowska-Majewska K (2010) Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol 638:47–53

Su SJ, Yeh TM, Chuang WJ, Ho CL, Chang KL, Cheng HL, Liu HS, Hsu PY, Chow NH (2005) The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem Pharmacol 69:307–318

Sun Q, Cong R, Yan H, Gu H, Zeng Y, Liu N, Chen J, Wang B (2009) Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep 22:563–567

Suter M, Aagaard-Tillery K (2009) Environmental influences on epigenetic profiles. Semin Reprod Med 27:380–390

Tang W, Newbold R, Mardilovich K, Jefferson W, Cheng R, Medvedovic M, Ho S (2008) Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 149:5922–5931

Tate P, Bird A (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

Telang U, Brazeau D, Morris M (2009) Comparison of the effects of phenethyl isothiocyanate and sulforaphane on gene expression in breast cancer and normal mammary epithelial cells. Exp Biol Med (Maywood) 234:287–295

Tikoo K, Meena R, Kabra D, Gaikwad A (2008) Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br J Pharmacol 153:1225–1231

Traka M, Gasper A, Smith J, Hawkey C, Bao Y, Mithen R (2005) Transcriptome analysis of human colon Caco-2 cells exposed to sulforaphane. J Nutr 135:1865–1872

Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG (2010) Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10:276

Tsao A, Liu D, Martin J, Tang X, Lee J, El-Naggar A, Wistuba I, Culotta K, Mao L, Gillenwater A, Sagesaka Y, Hong W, Papadimitrakopoulou V (2009) Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev Res (Phila Pa) 2:931–941

Vanamala J, Reddivari L, Radhakrishnan S, Tarver C (2010) Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 10:238

Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, Wargovich MJ (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48:920–933

Wade P (2001) Methyl CpG-binding proteins and transcriptional repression. Bioessays 23:1131–1137

Wang R, Zheng Y, Kim H, Xu X, Cao L, Luhasen T, Lee M, Xiao C, Vassilopoulos A, Chen W, Gardner K, Man Y, Hung M, Finkel T, Deng C (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32:11–20

Yang C, Landau J, Huang M, Newmark H (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406

Yuasa Y, Nagasaki H, Akiyama Y, Sakai H, Nakajima T, Ohkura Y, Takizawa T, Koike M, Tani M, Iwai T, Sugihara K, Imai K, Nakachi K (2005) Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. Carcinogenesis 26:193–200

Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, Kawano T, Sugihara K, Imai K, Nakachi K (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124:2677–2682

Yun JM, Jialal I, Devaraj S (2010a) Effects of epigallocatechin gallate on regulatory T cell number and function in obese v. lean volunteers. Br J Nutr 103:1771–1777

Yun JM, Jialal I, Devaraj S (2010b) Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J Nutr Biochem (in press)

Zhang D, Al-Hendy M, Richard-Davis G, Montgomery-Rice V, Sharan C, Rajaratnam V, Khurana A, Al-Hendy A (2010) Green tea extract inhibits proliferation of uterine leiomyoma cells in vitro and in nude mice. Am J Obstet Gynecol 202(289):e281–e289