Epidemiological characterization of imported recurrent Plasmodium vivax and Plasmodium ovale in China, 2013–2020

Infectious Diseases of Poverty - Tập 10 - Trang 1-10 - 2021
Yanwen Cui1,2,3,4, Li Zhang1,2,3,4, Zhigui Xia1,2,3,4, Hejun Zhou1,2,3,4, Fang Huang1,2,3,4
1National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
2NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China
3WHO Collaborating Centre for Tropical Diseases, Shanghai, China
4National Center for International Research on Tropical Diseases, Shanghai, China

Tóm tắt

China has reached important milestones in the elimination of malaria. However, the numbers of imported recurrent cases of Plasmodium vivax and P. ovale are gradually increasing, which increases the risk of malaria re-establishment in locations where Anopheles mosquitoes exist. The aim of this study is to characterize the epidemiological profiles of imported recurrent P. vivax and P. ovale cases, quantifying the recurrence burden and guiding the development of appropriate public health intervention strategies. Individual-level data of imported recurrent P. vivax and P. ovale cases were collected from 2013 to 2020 in China via the Parasitic Diseases Information Reporting Management System. Demographic characteristics, temporal and spatial distributions, and the interval from previous infection to recurrence were analyzed by SAS, ArcGIS and GraphPad Prism software, respectively, to explore the epidemiological profiles of imported recurrent cases. A total of 307 imported recurrent cases, including 179 P. vivax and 128 P. ovale cases, were recorded. The majority of cases occurred in males (P. vivax 91.1%, P. ovale 93.8%) and migrant workers (P. vivax 43.2%, P. ovale 44.7%). Individuals aged 30–39 years had the highest P. vivax and P. ovale recurrent infection rates, respectively. The number of imported recurrent cases of infection by these two malaria species increased from 2013 to 2018, and P. vivax infection showed well-defined seasonality, with two peaks in February and June, respectively. More than 90% of patients with recurrent cases did not receive radical treatment for previous infection. Most imported recurrent P. vivax cases were reported in Yunnan Province and were imported from Myanmar, Ethiopia, and Pakistan, while most recurrent P. ovale cases were reported in southern China and primarily imported from Cameroon, Ghana, and Nigeria. The intervals from previous malaria infection to recurrence among different continents were significantly different (P = 0.0016) for P. vivax malaria but not for P. ovale malaria (P = 0.2373). The large number of imported recurrent cases has been a major challenge in the prevention of malaria re-establishment in China. This study provides evidence to guide the development of appropriate public health intervention strategies for imported recurrent P. vivax and P. ovale cases.

Tài liệu tham khảo

WHO. World malaria report 2020. Geneva: World Health Organization; 2020. Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, et al. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis. 2012;6: e1814. WHO. World malaria report 2015. Geneva: World Health Organization; 2015. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95:15–34. Kerkhof K, Canier L, Kim S, Heng S, Sochantha T, Sovannaroth S, et al. Implementation and application of a multiplex assay to detect malaria-specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian pre-elimination areas. Malar J. 2015;14:338. Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vector Borne Dis. 2018;55:1–8. Taylor AR, Watson JA, Chu CS, Puaprasert K, Duanguppama J, Day NPJ, et al. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat Commun. 2019;10:5595. Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg. 2016;95:35–51. Zhu DS, Yang WZ, Wang JJ. Progress on the long incubation period of Plasmodium vivax. Zhonghua Liu Xing Bing Xue Za Zhi. 2008;29:81–4 (In Chinese). Feng X, Xia ZG, Feng J, Zhang L, Yan H, Tang L, et al. The contributions and achievements on malaria control and forthcoming elimination in China over the past 70 years by NIPD-CTDR. Adv Parasitol. 2020;110:63–105. Lai S, Sun J, Ruktanonchai NW, Zhou S, Yu J, Routledge I, et al. Changing epidemiology and challenges of malaria in China towards elimination. Malar J. 2019;18:107. Feng J, Zhou SS. From control to elimination: the historical retrospect of malaria control and prevention in China. Chin J Parasit Dis. 2019;37:505–13 (In Chinese). Lin JT, Saunders DL, Meshnick SR. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol. 2014;30:183–90. malERA Consultative Group on Diagnoses and Diagnostics. A research agenda for malaria eradication: drugs. PLoS Med. 2011;8: e1000402. China NHC. Diagnosis of malaria (WS259-2015). Beijing: National Health Commission of the People’s Republic China; 2016.(In Chinese). Cowell AN, Valdivia HO, Bishop DK, Winzeler EA. Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome Med. 2018;10:52. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297. Morgan GS, Chiodini P, Evans M. Relapsing malaria: two cases of malaria presenting 8 months after return from Africa despite adherence to antimalarial chemoprophylaxis. Br J Gen Pract. 2012;62:555–6. Nabarro LEB, Nolder D, Broderick C, Nadjm B, Smith V, Blaze M, et al. Geographical and temporal trends and seasonal relapse in Plasmodium ovale spp. and Plasmodium malariae infections imported to the UK between 1987 and 2015. BMC Med. 2018;16:218. Manandhar S, Bhusal CL, Ghimire U, Singh SP, Karmacharya DB, Dixit SM. A study on relapse/re-infection rate of Plasmodium vivax malaria and identification of the predominant genotypes of P. vivax in two endemic districts of Nepal. Malar J. 2013;12:324. Xia ZG, Feng J, Zhou SS. Malaria situation in the People’s Republic of China in 2012. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2013;31:413–8 (In Chinese). China NHC. Technical regulations for application of antimalarials. Beijing: National Health Commission of the People’s Republic China; 2015. (In Chinese). Chu CS, Phyo AP, Lwin KM, Win HH, San T, Aung AA, et al. Comparison of the cumulative efficacy and safety of chloroquine, artesunate, and chloroquine-primaquine in Plasmodium vivax malaria. Clin Infect Dis. 2018;67:1543–9. Hewitt S, Delacollette C, Chavez I. Malaria situation in the Greater Mekong Subregion. Southeast Asian J Trop Med Public Health. 2013;44(Suppl 1):46–72; discussion 306-7. Badens C, Martinez di Montemuros F, Thuret I, Michel G, Mattei JF, Cappellini MD, et al. Molecular basis of haemoglobinopathies and G6PD deficiency in the Comorian population. Hematol J. 2000;1:264–8. Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012;9: e1001339. Li Q, Yang F, Liu R, Luo L, Yang Y, Zhang L, et al. Prevalence and molecular characterization of glucose-6-phosphate dehydrogenase deficiency at the China-Myanmar border. PLoS One. 2015;10:e0134593. Zhang L, Yang Y, Liu R, Li Q, Yang F, Ma L, et al. A multiplex method for detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations. Int J Lab Hematol. 2015;37:739–45. Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis. 2018;12: e0006230. Daher A, Silva J, Stevens A, Marchesini P, Fontes CJ, Ter Kuile FO, et al. Evaluation of Plasmodium vivax malaria recurrence in Brazil. Malar J. 2019;18:18. Whitby M, Wood G, Veenendaal JR, Rieckmann K. Chloroquine-resistant Plasmodium vivax. Lancet. 1989;2:1395. Baird JK, Basri H, Purnomo, Bangs MJ, Subianto B, Patchen LC, et al. Resistance to chloroquine by Plasmodium vivax in Irian Jaya, Indonesia. Am J Trop Med Hyg. 1991;44:547–52. Garavelli PL, Corti E. Chloroquine resistance in Plasmodium vivax: the first case in Brazil. Trans R Soc Trop Med Hyg. 1992;86:128. Myat Phone K, Myint O, Myint L, Thaw Z, Kyin Hla A, Nwe NY. Emergence of chloroquine-resistant Plasmodium vivax in Myanmar (Burma). Trans R Soc Trop Med Hyg. 1993;87:687. Soto J, Toledo J, Gutierrez P, Luzz M, Llinas N, Cedeno N, et al. Plasmodium vivax clinically resistant to chloroquine in Colombia. Am J Trop Med Hyg. 2001;65:90–3. Teka H, Petros B, Yamuah L, Tesfaye G, Elhassan I, Muchohi S, et al. Chloroquine-resistant Plasmodium vivax malaria in Debre Zeit. Ethiopia Malar J. 2008;7:220. Van den Abbeele K, Van den Enden E, Van den Ende J. Combined chloroquine and primaquine resistant Plasmodium vivax malaria in a patient returning from India. Ann Soc Belg Med Trop. 1995;75:73–4. Liu H, Yang HL, Tang LH, Li XL, Huang F, Wang JZ, et al. Monitoring Plasmodium vivax chloroquine sensitivity along China–Myanmar border of Yunnan Province, China during 2008–2013. Malar J. 2014;13:364. Xu S, Zeng W, Ngassa Mbenda HG, Liu H, Chen X, Xiang Z, et al. Efficacy of directly-observed chloroquine-primaquine treatment for uncomplicated acute Plasmodium vivax malaria in northeast Myanmar: a prospective open-label efficacy trial. Travel Med Infect Dis. 2020;36: 101499. Antonio-Nkondjio C, Ndo C, Njiokou F, Bigoga JD, Awono-Ambene P, Etang J, et al. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit Vectors. 2019;12:501. Garrido-Cardenas JA, Cebrián-Carmona J, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Analysis of global research on malaria and Plasmodium vivax. Int J Environ Res Public Health. 2019;16(11):1928. Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9:555–66. Douglas NM, Nosten F, Ashley EA, Phaiphun L, van Vugt M, Singhasivanon P, et al. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin Infect Dis. 2011;52:612–20. Shanks GD, White NJ. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis. 2013;13:900–6. Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, Golding N, et al. Geographical variation in Plasmodium vivax relapse. Malar J. 2014;13:144.