Tổng hợp enzym của chất béo tương tự trong công thức sữa trẻ em được làm giàu với axit capric

Carlos A. Álvarez1,2, Casimir C. Akoh1
1Department of Food Science and Technology, University of Georgia, Athens, USA
2Department of Research and Development, Team Foods S.A, Bogotá D.C, Colombia

Tóm tắt

Một lipid có cấu trúc (SL) với một lượng lớn axit palmitic ở vị trí sn-2 và được làm giàu với axit capric (C), đã được sản xuất qua hai giai đoạn interesterification enzym bằng cách sử dụng lipase đóng rắn, Lipozyme® TL IM (Novozymes Bắc Mỹ Inc., Franklinton, NC, Mỹ). Các chất nền cho phản ứng là stearin cọ có điểm nóng chảy cao, dầu hướng dương có hàm lượng oleic cao và tricaprin. SL đã được đặc trưng về hồ sơ axit béo tổng thể và vị trí, các loại phân tử triacylglycerol (TAG), hàm lượng axit béo tự do, cũng như hồ sơ nóng chảy và kết tinh. SL cuối cùng chứa 20,13 mol% tổng axit palmitic, trong đó gần 40% nằm ở vị trí sn-2. Hàm lượng tổng axit capric là 21,22 mol%, chủ yếu ở các vị trí sn-1 và sn-3. Các TAG chiếm ưu thế trong SL là oleic–palmitic–oleic, POP và CLC. Nhiệt độ hoàn thành nóng chảy và nhiệt độ bắt đầu kết tinh của SL lần lượt là 27,7 và 6,1 °C. Năng suất cho phản ứng tổng thể đạt 90 wt%. SL này có thể được sử dụng hoàn toàn hoặc phần nào trong các hỗn hợp chất béo thương mại cho công thức dành cho trẻ sơ sinh.

Từ khóa

#lipid có cấu trúc #axit palmitic #axit capric #triacylglycerol #công thức sữa trẻ em

Tài liệu tham khảo

Jensen RG (1989) The lipids of human milk. CRC Press, Boca Raton Wells JCK (1996) Nutritional considerations in infant formula design. Semin Neonatal 1:19–26 Scott CE (2010) Structured lipid: a functional and fundamental ingredient to more closely matches infant formula to breast milk. Nutrafoods 9:7–13 Innis SM (1991) Essential fatty acids in growth and development. Prog Lipid Res 30:39–103 Bracco U (1994) Effect of triglyceride structure on fat absorption. Am J Clin Nutr 60:1002S–1009S Lucas A, Quinlan P, Abrams S, Ryan S, Meah S, Lucas PJ (1997) Randomised controlled trial of a synthetic triglyceride milk formula for preterm infants. Arch Dis Child Fetal Neonatal 77:F178–F184 Tomarelli RM, Meyer BJ, Weaber JR, Bernhart FW (1968) Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. J Nutr 95:583–590 Høy CE, Xu X (2001) Structured triacylglycerols. In: Gunstone FD (ed) Structured and modified lipids. Marcel Dekker, New York, pp 209–239 Akoh CC, Kim BH (2008) Structured Lipids. In: Akoh CC, Min DB (eds) Food lipids. CRC Press, Boca Raton, pp 841–872 Zock PL, Gerritsen J, Katan MB (1996) Partial conservation of the sn-2 position of dietary triglycerides in fasting plasma lipids in humans. Eur J Clin Investig 26:141–150 Zou X, Huang J, Jin Q, Guo Z, Liu Y, Cheong L, Xu X, Wang X (2013) Characterization and oxidative stability of human milk fat substitutes enzymatically produced from palm stearin. J Am Oil Chem Soc 91:481–495 Wang X, Huang J, Jin Q, Song Z, Liu Y, Zou X (2012) Lipase-catalyzed synthesis of human milk fat substitutes from palm stearin in a continuous packed bed reactor. J Am Oil Chem Soc 89:1463–1472 Teichert SA, Akoh CC (2011) Modifications of stearidonic acid soybean oil by enzymatic acidolysis for the production of human milk fat analogues. J Agric Food Chem 59:13300–13310 Turan D, Yeşilçubuk NS, Akoh CC (2012) Production of human milk fat analogue containing docosahexaenoic and arachidonic acids. J Agric Food Chem 60:4402–4407 Pande G, Sabir JSM, Baeshen NA, Akoh CC (2013) Enzymatic synthesis of extra virgin olive oil based infant formula fat analogues containing ARA and DHA: one-stage and two-stage syntheses. J Agric Food Chem 61:10590–10598 Pina-Rodriguez AM, Akoh CC (2009) Synthesis and characterization of a structured lipid from amaranth oil as a partial fat substitute in milk-based infant formula. J Agric Food Chem 57:6748–6756 Ifeduba EA, Akoh CC (2013) Chemoenzymatic method for producing stearidonic acid concentrates from stearidonic acid soybean oil. J Am Oil Chem Soc 90:1011–1022 Babayan VK (1988) Medium chain triglycerides. In: Babayan VK, Beare-Rogers J (eds) Dietary fat requirements in health and development. American Oil Chemists’ Society Press, Champaign, pp 73–86 Francois CA, Connor SL, Wander RS, Connor WE (1998) Acute effects of dietary fatty acids on the fatty acids of human milk. Am J Clin Nutr 67:301–308 López-López A, López-Sabater MC, Campoy-Folgoso C, Rivero-Urgell M, Castellote-Bargalló AI (2002) Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr 56:1242–1254 St-Onge MP, Mayrsohn B, O’Keeffe M, Kissileff HR, Choudhury AR, Laferrère B (2014) Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men. Eur J Clin Nutr 68:1134–1140 St-Onge MP, Ross R, Parsons WD, Jones PJ (2003) Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes Res 11:395–402 Novozymes Biopharma DK A/S (2014) Enzymes for Biocatalysis: for smarter chemical synthesis. http://www.novozymes.com/en/solutions/biopharma/Brochures/Documents/2014-12576-01_Biocatalysis-Product-Sheet-Immobilised-Lipases-2.pdf. Accessed 20 Apr 2015 Pande G, Sabir JSM, Baeshen NA, Akoh CC (2013) Synthesis of infant formula fat analogs enriched with DHA from extra virgin olive oil and tripalmitin. J Am Oil Chem Soc 90:1311–1318 Official Methods of Analysis of AOAC International (2012) Method 996.01. AOAC Int, Gaitherburg Luddy FE, Bardford RA, Herb SF, Magidman P, Riemenschneider RW (1964) Pancreatic lipase hydrolysis of triacylglycerides as a semi-micro technique. J Am Oil Chem Soc 41:639–696 Official Methods and Recommended Practices of the American Oil Chemists’ Society (2011) Method Cj 1–94. AOCS, Champaign Son JM, Lee KT, Akoh CC, Kim MR, Kim MJ, Lee JH (2010) Optimization of tripalmitin-rich fractionation from palm stearin by response surface methodology. J Sci Food Agric 90:1520–1526 Karupaiah T, Sundram K (2007) Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab 4:1–17 Kennedy K, Fewtrell MS, Morely R, Abbott R, Quinlan PT, Wells JC, Bindels JG, Lucas A (1999) Double-blind, randomized trial of a synthetic triacylglycerol in formula-fed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization. Am J Clin Nutr 70:920–927 Yang T, Fruekilde MB, Xu X (2005) Suppression of acyl migration in enzymatic production of structured lipids through temperature programming. Food Chem 92:101–107 Xu X (2000) Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur J Lipid Sci Technol 102:287–303 Xu X, Skands ARH, Høy CE, Mu H, Balchen S, Adler-Nissen J (1998) Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design. J Am Oil Chem Soc 75:1179–1186 Morera S, Castellote AI, Jauregui O, Casals I, López-Sabater MC (2003) Triacylglycerol markers of mature human milk. Eur J Clin Nutr 57:1621–1626 Mu H, Høy CE (2004) The digestion of dietary triacyglycerols: review. Prog Lipid Res 43:105–133 Sato K (2005) Polymorphism in fats and oils. In: Bailey’s industrial oil and fat products. Wiley, Hiroshima Strayer D (2006) Food fats and oils. Institute of Shortening and Edible Oils, Washington DC Bornaz S, Fanni J, Parmentier M (1994) Limit of the solid fat content modification of butter. J Am Oil Chem Soc 71:1373–1380 Malcata FX, Reyes HR, García HS, Hill CG Jr, Amundson CH (1992) Kinetics and mechanisms catalyzed by immobilized lipases. Enzyme Microb Technol 14:426–446 Briand D, Dubreucq E, Galzy P (1994) Enzymatic fatty esters synthesis in aqueous medium with lipase from Candida parapsilosis (Ashford) Langeron and Talice. Biotechnol Lett 16(813):818 Svesson I, Wehtje E, Adlercreutz P, Mattiasson B (1994) Effects of water activity on reaction rates and equilibrium positions in enzymatic esterifications. Biotechnol Bioeng 44:549–556