Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after

Molecular Ecology - Tập 19 Số 7 - Trang 1283-1295 - 2010
Bernard Angers1, Emilie Castonguay2, Rachel Massicotte1
1Department of Biological Sciences, Université de Montréal. C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7
2Wellcome Trust Centre for Cell Biology, University of Edinburgh, Swann Building, 4.4 King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK

Tóm tắt

AbstractOrganisms often respond to environmental changes by producing alternative phenotypes. Epigenetic processes such as DNA methylation may contribute to environmentally induced phenotypic variation by modifying gene expression. Changes in DNA methylation, unlike DNA mutations, can be influenced by the environment; they are stable at the time scale of an individual and present different levels of heritability. These characteristics make DNA methylation a potentially important molecular process to respond to environmental change. The aim of this review is to present the implications of DNA methylation on phenotypic variations driven by environmental changes. More specifically, we explore epigenetic concepts concerning phenotypic change in response to the environment and heritability of DNA methylation, namely the Baldwin effect and genetic accommodation. Before addressing this point, we report major differences in DNA methylation across taxa and the role of this modification in producing and maintaining environmentally induced phenotypic variation. We also present the different methods allowing the detection of methylation polymorphism. We believe this review will be helpful to molecular ecologists, in that it highlights the importance of epigenetic processes in ecological and evolutionary studies.

Từ khóa


Tài liệu tham khảo

10.1126/science.1060701

10.1126/science.1108190

10.1038/35047580

10.1016/S0168-9525(00)89009-5

10.1101/gad.947102

10.1371/journal.pgen.0020049

10.1146/annurev.ecolsys.39.110707.173441

10.1111/j.1461-0248.2007.01130.x

10.1016/0092-8674(91)90267-3

10.1016/S0065-2660(08)60048-6

10.1007/BF02941103

10.1002/bies.950190611

10.1038/nrg1601

10.1016/j.cell.2007.02.007

10.1002/(SICI)1521-1878(199905)21:5<402::AID-BIES7>3.0.CO;2-B

10.1016/j.yfrne.2008.01.003

10.1073/pnas.0610410104

10.1111/j.1558-5646.2007.00203.x

10.1111/j.1469-8137.2005.01322.x

10.1016/S0169-5347(01)02266-2

10.1111/j.1365-294X.2005.02968.x

10.1073/pnas.0703739104

10.1111/j.0014-3820.2004.tb01705.x

10.1086/285860

10.1139/cjb-77-11-1617

10.1086/504729

10.1073/pnas.0500398102

10.1073/pnas.89.5.1827

10.1016/S0306-9877(03)00329-3

Gorelick R, 2005, Environmentally alterable additive genetic effects, Evolutionary Ecology Research, 7, 371

10.1162/biot.2008.3.1.79

Gorelick R, 2010, Epigenetics: Linking Genotype and Phenotype in Development and Evolution

10.1007/s10541-005-0148-6

10.1371/journal.pbio.0060261

10.1023/A:1026494212540

10.1126/science.1136352

10.1056/NEJMoa064522

10.1104/pp.103.026708

10.1098/rstb.1995.0147

10.1098/rspb.1991.0032

Jablonka E, 1995, Epigenetic inheritance and evolution. The Lamarkian dimension, 10.1093/oso/9780198540625.001.0001

Jablonka E, 2008, The epigenome in evolution: beyond the modern synthesis, Vogis Herald, 12, 242

10.1086/598822

10.1038/ng1089

10.1007/s12275-008-0129-8

10.1016/j.tree.2004.03.034

10.1126/science.1153069

10.1006/jtbi.1996.0109

10.1016/0092-8674(92)90611-F

10.1016/j.cell.2008.03.029

10.1038/nature08514

10.1016/S0003-2697(03)00169-6

10.1139/G07-055

10.1006/bbrc.1999.1230

10.1038/ng1841

10.1038/nature07107

10.1016/j.bbrc.2005.03.091

10.1038/15490

10.1098/rspb.1998.0436

10.1006/jtbi.1999.0974

10.1371/journal.pone.0004488

10.1016/0169-5347(96)10008-2

10.1111/j.0014-3820.2003.tb00354.x

10.1242/jeb.02070

10.1093/molbev/msi098

10.1098/rspb.2003.2372

10.1016/S0168-9525(02)02709-9

10.1371/journal.pbio.0020405

10.1016/j.cell.2007.01.023

10.1038/nature04674

Richards EJ, 2006, Opinion—Inherited epigenetic variation—revisiting soft inheritance, Nature Reviews Genetics, 7, 395, 10.1038/nrg1834

10.1016/j.gde.2008.01.014

10.1002/9780470515501.ch13

10.1038/24550

Schlichting CD, 2004, Phenotypic Plasticity: Functional and Conceptual Approaches, 191, 10.1093/oso/9780195138962.003.0012

10.1086/285543

10.1111/j.1558-5646.1953.tb00069.x

10.1038/ng1067

10.1098/rspb.2005.3291

10.1038/nrg2341

Thoday JM, 1953, Components of fitness, Symposia of the Society for Experimental Biology, 7, 96

10.1111/j.1365-2699.2006.01462.x

10.1016/S0065-2660(08)60119-4

Waddington CH, 1953, Evolution: Society of Experimental Biology Symposium, 186

10.1038/nn1276

10.1038/ng1598

10.1111/j.1420-9101.2006.01175.x

10.1111/j.1365-2435.2007.01283.x

10.1016/j.tig.2005.04.005

10.1096/fasebj.12.11.949

Wright S, 1932, The roles of mutation, inbreeding, crossbreeding and selection in evolution, Proceedings of the Sixth International Congress of Genetics, 1, 356

10.1007/s004380050986

10.1007/s00438-004-1017-5

10.1093/icb/icm025

10.1038/ng1929