Environmental assessment of residues generated after consecutive acid-base pretreatment of sugarcane bagasse by advanced oxidative process
Tóm tắt
Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.
Tài liệu tham khảo
Goldemberg J, Coelho S, Guardabassi P: The sustainability of ethanol production from sugarcane. Ener Pol. 2008, 36: 2086-2097. 10.1016/j.enpol.2008.02.028.
Ojeda K, Ávila O, Suárez J, Kafarov V: Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels. Chem Eng Res Design. 2011, 89: 270-279. 10.1016/j.cherd.2010.07.007.
Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P: Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev. 2007, 2: 014-032.
Cardona CA, Sánchez ÓJ: Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol. 2010, 98: 2415-2457.
Chandel AK, Silva SS, Carvalho W, Singh OV: Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol. 2012, 87: 11-20. 10.1002/jctb.2742.
Rezende CA, Lima MA, Maziero P, Azevedo ER, Garcia W, Polikarpov I: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels. 2011, 4: 54-10.1186/1754-6834-4-54.
Giese EC, Pierozzi M, Dussan KJ, Chandel AK, Silva SS: Enzymatic saccharification of acid-alkali pretreated sugarcane bagasse using commercial enzyme preparations. J Chem Technol Biotechnol. 2012, 88: 1266-1272.
Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silvio SS: Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol. 2012, 1: 15-
Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010, 28: 817-830.
Zhu JY, Pan XJ: Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour Technol. 2010, 101: 4992-5002. 10.1016/j.biortech.2009.11.007.
Wang L, Chen H: Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Proc Biochem. 2011, 46: 604-607. 10.1016/j.procbio.2010.09.027.
Canilha L, Santos VTO, Rocha GJM, Silva JBA, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W: A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol. 2011, 38: 1467-1475. 10.1007/s10295-010-0931-2.
Chandel AK, Silva SS, Singh OV: Detoxification of lignocellulose hydrolysates: Biochemical and metabolic engineering towards white biotechnology. Bio Ener Res. 2013, 6: 388-401.
Rodrigues GD, Silva LHM, Silva MCH: Alternativas verdes para o preparo de amostras e determinação de poluentes fenólicos em água. Química Nova. 2010, 33: 1370-1378.
Uğurlu M, Gürses A, Doğar Ç, Yalçın M: The removal of lignin and phenol from paper Mill effluents by electrocoagulation. J Environ Manag. 2008, 87: 420-428. 10.1016/j.jenvman.2007.01.007.
Uğurlu M, Karaoğlu MH: TiO2 supported on sepiolite: preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chem Eng J. 2011, 166: 859-867. 10.1016/j.cej.2010.11.056.
Cansado IPP, Mourão PAM, Falcão AI, Ribeiro Carrott MML, Carrott PJM: The influence of the activated carbon post-treatment on the phenolic compounds removal. Fuel Proc Technol. 2012, 103: 64-70.
Gonçalves MR, Costa JC, Marques IP, Alves MM: Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res. 2012, 46: 1684-1692. 10.1016/j.watres.2011.12.046.
Amendola D, De Faveri DM, Egües I, Serrano L, Labidi J, Spigno G: Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour Technol. 2012, 107: 267-274.
Babuponnusamia A, Muthukumar K: Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chem Eng J. 2012, 183: 1-9.
Oller I, Malato S, Sánchez-Pére JA: Combination of advanced oxidation processes and biological treatments for wastewater decontamination - a review. Sci Total Environ. 2011, 409: 4141-4166. 10.1016/j.scitotenv.2010.08.061.
Fatta-Kassinos D, Vasquez MI, Kümmerer K: Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation process - Degradation, elucidation of by products and assessment of their biological potency. Chemosphere. 2011, 85: 693-709. 10.1016/j.chemosphere.2011.06.082.
Lamsal R, Walsh ME, Gagnon GA: Comparison of advanced oxidation processes for the removal of natural organic matter. Water Res. 2011, 45: 3263-3269. 10.1016/j.watres.2011.03.038.
Wols BA, Hofman-Caris CHM: Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 2012, 46: 2815-2827. 10.1016/j.watres.2012.03.036.
Sharma VK, Triantis TM, Antoniou MG, He X, Pelaez M, Han C, Song W, O’Shea KE, de La Cruz AA, Kaloudis T, Hiskia A, Dionysiou DD: Destruction of microcystins by conventional and advanced oxidation processes: A review. Sep Purif Technol. 2012, 91: 3-17.
Tobaldi DM, Tucci A, Camera-Roda G, Baldi DG, Esposito L: Photocatalytic activity for exposed building materials. J European Ceramic Soc. 2008, 28: 2645-2652. 10.1016/j.jeurceramsoc.2008.03.032.
Michalska K, Miazek K, Krzystek L, Ledakowicz S: Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol. 2012, 119: 72-78.
Cortez S, Teixeira P, Oliveira R, Mota M: Evaluation of Fenton and ozone-based advanced oxidation process as mature landfill leachate pre-treatments. J Environ Manag. 2011, 92: 749-755. 10.1016/j.jenvman.2010.10.035.
Chu L, Wang J, Dong J, Liu H, Sun X: Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere. 2012, 86: 409-414. 10.1016/j.chemosphere.2011.09.007.
APHA, American Public Health Association: Standard Methods for Examination of Water and Wastewater. 2005, Washington, DC: (APHA, AWWA), 2001-3710. 21
Lucas MS, Peres JA, Amor C, Prieto-Rodríguez L, Maldonado MI, Malato S: Tertiary treatment of pulp mill wastewater by solar photo-Fenton. J Hazard Mat. 2012, 225–226: 173-181.
Ma Y, Chang C, Chiang Y, Sung H, Chao AC: Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst. Chemosphere. 2008, 71: 998-1004. 10.1016/j.chemosphere.2007.10.061.
Ninomiya K, Takamatsu H, Onishi A, Takahashi K, Shimizu N: Sonocatalytic-Fenton reaction for enhanced OH radical generation and its application to lignin degradation. Ultrasonics Sonochem. 2013, 20: 1092-1097. 10.1016/j.ultsonch.2013.01.007.
Makhotkina OA, Preis SV, Parkhomchuk EV: Water delignification by advanced oxidation processes: Homogeneous and heterogeneous Fenton and H2O2 photo-assisted reactions. Appl Catal B: Environmental. 2008, 84: 821-826. 10.1016/j.apcatb.2008.06.015.
Pupo Nogueira RF, Trovó AG, Silva MRA, Villa RD: Fundamentos e aplicações ambientais dos processos Fenton e foto-Fenton. Química Nova. 2007, 30: 400-408.
Manenti DR, Gomes LFS, Borba FH, Módenes NA, Espinoza-Quiñones FR, Palácio SM: Otimização do processo foto-Fenton utilizando irradiação artificial na degradação do efluente têxtil sintético. Engevista. 2010, 12: 22-32.
Hermosilla D, Merayo N, Ordóñez R, Blanco A: Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper Mill. Waste Manag. 2012, 32: 1236-1243. 10.1016/j.wasman.2011.12.011.
Samet Y, Hmani E, Abdelhédi R: Fenton and solar photo-Fenton processes for the removal of chlorpyrifos insecticide in wastewater. Water. 2012, 38: 537-542.
Bentivenga G, Bonini C, D’Auria M, De Bona A: Degradation of steam-exploded lignin from beech by using Fenton’s reagent. Biomass Bioener. 2003, 24: 233-238. 10.1016/S0961-9534(02)00135-6.
Salazar RFS, Peixoto ALC, Izário Filho HJ: Avaliação da metodologia 5220 D. Closed reflux, colorimetric method para determinação da demanda química de oxigênio (DQO) em efluentes lácteo. Analytica. 2010, 44: 55-61.
Companhia de Tecnologia de Saneamento Ambiental: Variáveis de Qualidade das Águas. 2013, Disponível em: [http://www.cetesb.sp.gov.br/Agua/rios/variaveis.asp#dbo] Accessed on April, 2013
CONAMA - Conselho Nacional do Meio Ambiente: CONAMA - Conselho Nacional do Meio Ambiente. [http://www.mma.gov.br/conama] Accessed on April, 2013
Autin O, Romelot C, Rust L, Hart J, Jarvis P, MacAdam J, Parsons SA, Jefferson B: Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes. Chemosphere. 2013, 92: 745-751. 10.1016/j.chemosphere.2013.04.028.
Azbar N, Yonar T, Kestioglu K: Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere. 2004, 55: 35-43. 10.1016/j.chemosphere.2003.10.046.
Canizares P, Paz R, Sáez C, Rodrigo MA: Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. J Environ Manag. 2009, 90: 410-420. 10.1016/j.jenvman.2007.10.010.
Chen YC, Smirniotis P: Enhancement of photocatalytic degradation of phenol and chloro-phenols by ultrasound. Ind Eng Chem Res. 2002, 41: 5958-5965. 10.1021/ie020415o.
Chong MN, Sharma AK, Burn S, Saint CP: Feasibility study on the application of advanced oxidation technologies for decentralized wastewater treatment. J Cleaner Prod. 2012, 35: 230-238.
Mahamuni NN, Adewuyi YG: Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrason Sonochem. 2010, 17: 990-1003. 10.1016/j.ultsonch.2009.09.005.
Módenes AN, Espinoza-Quiñones FR, Borba FH, Manenti DR: Performance evaluation of an integrated photo-Fenton – Electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chem Eng J. 2021, 197: 1-9.
Pérez JAS, Sánchez IMR, Carra I, Reina AC, López JLC, Malato S: Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs. J Haz Mat. 2013, 244–245: 195-203.