Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils

New Phytologist - Tập 196 Số 1 - Trang 79-91 - 2012
Stefano Manzoni1,2, Philip Taylor3, Andreas Richter4, Amilcare Porporato1,2, Göran I. Ågren5
1Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708-0287, USA
2Nicholas School of the Environment, Duke University, Box 90328, Durham NC 27708 USA
3Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
4Department of Terrestrial Ecosystem Research, University of Vienna, Althanstrasse 14, 1090 Austria
5Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden

Tóm tắt

Summary

Carbon (C) metabolism is at the core of ecosystem function. Decomposers play a critical role in this metabolism as they drive soil C cycle by mineralizing organic matter to CO2. Their growth depends on the carbon‐use efficiency (CUE), defined as the ratio of growth over C uptake. By definition, high CUE promotes growth and possibly C stabilization in soils, while low CUE favors respiration. Despite the importance of this variable, flexibility in CUE for terrestrial decomposers is still poorly characterized and is not represented in most biogeochemical models. Here, we synthesize the theoretical and empirical basis of changes in CUE across aquatic and terrestrial ecosystems, highlighting common patterns and hypothesizing changes in CUE under future climates. Both theoretical considerations and empirical evidence from aquatic organisms indicate that CUE decreases as temperature increases and nutrient availability decreases. More limited evidence shows a similar sensitivity of CUE to temperature and nutrient availability in terrestrial decomposers. Increasing CUE with improved nutrient availability might explain observed declines in respiration from fertilized stands, while decreased CUE with increasing temperature and plant C : N ratios might decrease soil C storage. Current biogeochemical models could be improved by accounting for these CUE responses along environmental and stoichiometric gradients.

Từ khóa


Tài liệu tham khảo

10.2307/1939202

Ågren GI, 1998, Theoretical ecosystem ecology. Understanding element cycles

10.1007/s004420100646

10.1016/j.soilbio.2007.02.007

10.1111/j.1461-0248.2005.00756.x

10.1038/ngeo846

10.1002/jpln.19861490409

10.1016/j.soilbio.2009.05.005

10.1016/j.soilbio.2007.08.011

10.3354/ame043243

10.1016/0038-0717(84)90127-5

10.2307/3544478

10.1016/j.soilbio.2006.01.022

10.1890/090227

10.1046/j.1365-2486.2003.00630.x

10.1086/303244

10.1016/0038-0717(86)90095-7

10.1007/s10533-007-9132-0

10.1111/j.1365-2486.2011.02496.x

10.1890/06-1847.1

10.1016/S0038-0717(00)00096-1

10.1016/j.soilbio.2011.05.001

10.1016/j.soilbio.2011.05.018

10.1007/s11104-010-0478-z

10.1038/35046058

10.1111/j.1365-2486.2010.02261.x

10.1029/2010GB003999

10.2136/sssaj2003.7980

10.1111/j.1461-0248.2005.00813.x

10.1086/657684

10.1007/s10021-002-0149-x

10.1016/S0038-0717(01)00101-8

10.1111/j.1461-0248.2006.00919.x

10.1111/j.0030-1299.2005.14049.x

10.1111/j.1365-2486.2011.02615.x

10.1126/science.1061967

10.1146/annurev.ecolsys.29.1.503

10.1002/bit.260320112

10.1111/j.1365-2486.2006.01240.x

10.1046/j.1365-2389.1998.4930487.x

10.1007/BF01051131

10.2307/1939413

10.1007/s11104-008-9623-3

10.1016/j.soilbio.2004.06.010

10.1016/j.soilbio.2009.03.010

IPCC.2007.SolomonS QinD ManningM ChenZ MarquisM AverytKB TignorM MillerHL eds.Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge UK & New York NY USA:Cambridge University Press.

10.1038/ngeo844

10.1007/s00248-006-9013-4

10.1097/00010694-197705000-00005

10.1029/2008GB003250

10.1016/S0304-3800(00)00420-8

10.1111/j.1574-6941.2010.00912.x

10.1371/journal.pone.0026955

10.1007/s10533-007-9103-5

10.1016/0038-0717(92)90196-5

10.1098/rstb.2007.2185

10.1016/0040-6031(94)02055-S

10.1890/06-1641

10.1126/science.1159792

10.1016/j.soilbio.2009.02.031

10.1890/11-0026.1

10.1890/09-0179.1

10.2136/sssaj1983.03615995004700010017x

10.1007/s004420000615

10.1016/j.advwatres.2006.05.025

10.1111/j.1365-2427.1986.tb00950.x

Panikov NS, 1995, Microbial growth kinetics

10.1016/0378-4754(95)00127-1

10.1029/2004GB002230

10.2136/sssaj1989.03615995005300040016x

10.2136/sssaj1987.03615995005100050015x

10.1146/annurev.mi.24.100170.000313

10.1016/j.femsec.2004.10.002

10.1073/pnas.0400522101

10.1016/j.soilbio.2010.08.032

10.1007/BF00477109

10.1128/JB.149.1.1-5.1982

10.1007/s11104-006-9003-9

10.1016/0038-0717(95)00096-W

10.1126/science.291.5512.2398

10.1016/S0304-3800(97)00067-7

10.1002/bit.260221202

10.1111/j.1574-6941.2011.01106.x

10.1128/MMBR.59.1.48-62.1995

10.1007/s00374-004-0790-y

10.1111/j.0030-1299.2005.14050.x

10.1007/BF02182998

10.1890/06-0219

10.1016/S0038-0717(03)00015-4

10.1128/AEM.62.7.2411-2415.1996

10.1038/nature08632

10.2136/sssaj2004.0347

10.1016/S0016-7061(96)00036-5

10.1016/j.soilbio.2008.07.002

10.1046/j.1365-2427.1997.00234.x

Sterner RW, 2002, Ecological stoichiometry. The biology of elements from molecules to the biosphere

10.1016/j.soilbio.2005.07.010

10.1016/j.soilbio.2011.04.020

10.1016/j.jtbi.2006.09.001

10.18174/njas.v38i3A.16585

10.1007/s00442-003-1419-9

10.5194/bg-8-477-2011

10.1021/bp9801087

10.1007/s11104-011-0736-8

10.1029/2010JG001434

10.1097/00010694-200510000-00002