Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thuật toán liệt kê cho các hàm khoảng cách hướng FDH dưới các giả định về tỷ lệ hoàn vốn khác nhau
Tóm tắt
Việc tính toán các hàm khoảng cách hướng cho công nghệ hull thải miễn phí (FDH) nói chung yêu cầu giải quyết các chương trình hỗn hợp phi tuyến tính. Cherchye et al. (J Product Anal 15(3):201–215, 2001) đã cung cấp một thuật toán liệt kê cho hàm khoảng cách hướng FDH trong trường hợp công nghệ có tỷ lệ hoàn vốn biến đổi. Trong bài viết này, chúng tôi cung cấp các thuật toán liệt kê nhanh cho các hàm khoảng cách hướng FDH dưới các giả định về tỷ lệ hoàn vốn không đổi, không tăng và không giảm. Do đó, hiện nay các thuật toán liệt kê đã có sẵn cho tất cả các giả định về tỷ lệ hoàn vốn thường được sử dụng.
Từ khóa
#Hàm khoảng cách hướng FDH #Công nghệ hull thải miễn phí #Tỷ lệ hoàn vốn.Tài liệu tham khảo
Afriat, S. (1972). Efficiency estimation of production functions. International Economic Review, 13(3), 568–598.
Agrell, P., & Tind, J. (2001). A dual approach to nonconvex frontier models. Journal of Productivity Analysis, 16(2), 129–147.
Akçay, A., Ertek, G., & Büyüközkan, G. (2012). Analyzing the solutions of DEA through information visualization and data mining techniques: SmartDEA framework. Expert Systems with Applications, 39(9), 7763–7775.
Alam, I., & Sickles, R. (2000). Time series analysis of deregulatory dynamics and technical efficiency: The case of the US Airline Industry. International Economic Review, 41(1), 203–218.
Balaguer-Coll, M., Prior, D., & Tortosa-Ausina, E. (2007). On the determinants of local government performance: A two-stage nonparametric approach. European Economic Review, 51(2), 425–451.
Barr, R. (2004). DEA software tools and technology: A state-of-the-art survey. In W. Cooper, L. Seiford, & J. Zhu (Eds.), Handbook on data envelopment analysis (pp. 539–566). Boston: Kluwer.
Briec, W., & Kerstens, K. (2006). Input, output and graph technical efficiency measures on non-convex FDH models with various scaling laws: An integrated approach based upon implicit enumeration algorithms. TOP, 14(1), 135–166.
Briec, W., Kerstens, K., & Vanden Eeckaut, P. (2004). Non-convex technologies and cost functions: Definitions, duality and nonparametric tests of convexity. Journal of Economics, 81(2), 155–192.
Cesaroni, G. (2011). A complete FDH efficiency analysis of a diffused production network: The case of the Italian Driver and Vehicle Agency. International Transactions in Operational Research, 18(2), 205–229.
Cesaroni, G., Kerstens, K., & Van de Woestyne, I. (2017). A new input-oriented plant capacity notion: Definition and empirical comparison. Pacific Economic Review, 22(4), 720–739.
Chambers, R., Chung, Y., & Färe, R. (1998). Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98(2), 351–364.
Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.
Cherchye, L., Kuosmanen, T., & Post, T. (2001). FDH directional distance functions with an application to European commercial banks. Journal of Productivity Analysis, 15(3), 201–215.
Chong, E., & Zak, S. (2001). Introduction to optimization (2nd ed.). New York: Wiley.
Cullinane, K., Song, D.-W., & Wang, T. (2005). The Application of mathematical programming approaches to estimating container port production efficiency. Journal of Productivity Analysis, 24(1), 73–92.
Cummins, D., & Zi, H. (1998). Comparison of Frontier efficiency methods: An application to the U.S. Life Insurance Industry. Journal of Productivity Analysis, 10(2), 131–152.
De Borger, B., & Kerstens, K. (1996). Cost efficiency of Belgian Local Governments: A comparative analysis of FDH, DEA, and econometric approaches. Regional Science and Urban Economics, 26(2), 145–170.
De Witte, K., & Marques, R. (2011). Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies. Journal of Productivity Analysis, 35(3), 213–226.
Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor efficiency in post offices. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.), The performance of public enterprises: Concepts and measurements (pp. 243–268). Amsterdam: North Holland.
Destefanis, S., & Sena, V. (2005). Public capital and total factor productivity: New evidence from the Italian regions, 1970–98. Regional Studies, 39(5), 603–617.
Diewert, W., & Parkan, C. (1983). Linear programming test of regularity conditions for production functions. In W. Eichhorn, K. Neumann, & R. Shephard (Eds.), Quantitative studies on production and prices (pp. 131–158). Würzburg: Physica-Verlag.
Dulá, J. (2008). A computational study of DEA with massive data sets. Computers & Operations Research, 35(4), 1191–1203.
Eiselt, H., & Sandblom, C.-L. (2007). Linear programming and its applications. Berlin: Springer.
Epstein, M., & Henderson, J. (1989). Data envelopment analysis for managerial control and diagnosis. Decision Sciences, 20(1), 90–119.
Färe, R., Grosskopf, S., & Zaim, O. (2002). Hyperbolic efficiency and return to the dollar. European Journal of Operational Research, 136(3), 671–679.
Fried, H., Lovell, C., & Turner, J. (1996). An analysis of the performance of university affiliated credit unions. Computers & Operations Research, 23(4), 375–384.
Fried, H., Lovell, C., & Vanden Eeckaut, P. (1993). Evaluating the performance of U.S. credit unions. Journal of Banking & Finance, 17(2–3), 251–265.
Green, R. (1996). DIY DEA: Implementing data envelopment analysis in the mathematical programming language AMPL. Omega, 24(4), 489–494.
Hackman, S. (2008). Production economics: Integrating the microeconomic and engineering perspectives. Berlin: Springer.
Kerstens, K., & Managi, S. (2012). Total factor productivity growth and convergence in the petroleum industry: Empirical analysis testing for convexity. International Journal of Production Economics, 139(1), 196–206.
Kerstens, K., & Van de Woestyne, I. (2014a). Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data. European Journal of Operational Research, 233(3), 749–758.
Kerstens, K., & Van de Woestyne, I. (2014b). Solution methods for nonconvex free disposal hull models: A review and some critical comments. Asia-Pacific Journal of Operational Research, 31(1), 1450010.
Kerstens, K., & Vanden Eeckaut, P. (1999). Estimating returns to scale using nonparametric deterministic technologies: A new method based on goodness-of-fit. European Journal of Operational Research, 113(1), 206–214.
Leleu, H. (2006). A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models. European Journal of Operational Research, 168(2), 340–344.
Leleu, H. (2009). Mixing DEA and FDH models together. Journal of the Operational Research Society, 60(1), 1730–1737.
Luenberger, D. (1992a). Benefit function and duality. Journal of Mathematical Economics, 21(5), 461–481.
Luenberger, D. (1992b). New optimality principles for economic efficiency and equilibrium. Journal of Optimization Theory and Applications, 75(2), 221–264.
Luenberger, D. (1995). Microeconomic theory. Boston: McGraw-Hill.
Mairesse, F., & Vanden Eeckaut, P. (2002). Museum assessment and FDH technology: Towards a global approach. Journal of Cultural Economics, 26(4), 261–286.
Mayston, D. (2014). Effectiveness analysis of quality achievements for university departments of economics. Applied Economics, 46(31), 3788–3797.
Olesen, O., & Petersen, N. (1996). A presentation of GAMS for DEA. Computers & Operations Research, 23(4), 323–339.
Podinovski, V. (2004). On the linearisation of reference technologies for testing returns to scale in FDH models. European Journal of Operational Research, 152(3), 800–802.
Sueyoshi, T. (1992). Measuring technical, allocative and overall efficiencies using a DEA algorithm. Journal of the Operational Research Society, 43(2), 141–155.
Tulkens, H. (1993). On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit. Journal of Productivity Analysis, 4(1–2), 183–210.
Walden, J., & Tomberlin, D. (2010). Estimating fishing vessel capacity: A comparison of nonparametric frontier approaches. Marine Resource Economics, 25(1), 23–36.
Zhu, D. (2010). A hybrid approach for efficient ensembles. Decision Support Systems, 48(3), 480–487.