Các tế bào không nhân tiết lộ vai trò khác biệt của nhân trong di chuyển tế bào, cực hóa và truyền động cơ học
Tóm tắt
Nhân tế bào từ lâu được giả định đóng một vai trò vật lý quan trọng trong quá trình cực hóa và di chuyển của tế bào, nhưng vai trò đó chưa được định nghĩa hoặc kiểm tra một cách nghiêm ngặt. Ở đây, chúng tôi đã loại bỏ nhân tế bào để kiểm tra tính cần thiết về mặt vật lý của nhân trong quá trình cực hóa tế bào và di chuyển có hướng. Sử dụng các tế bào động vật có vú không nhân (tế bào bào chất), chúng tôi phát hiện ra rằng việc thiết lập cực và di chuyển tế bào trong một chiều (1D) và hai chiều (2D) xảy ra mà không cần đến nhân. Các tế bào bào chất di chuyển theo hướng về phía các tín hiệu ngoại bào hòa tan (hóa hướng) và bám bề mặt (haptotaxis) và di chuyển tập thể trong các thử nghiệm trầy xước. Nhất quán với các nghiên cứu trước đây, di chuyển trong môi trường 3D phụ thuộc vào nhân. Một phần, điều này có thể phản ánh lực tác động giảm của tế bào bào chất lên các bề mặt đàn hồi về mặt cơ học. Phản ứng này cũng được mô phỏng ở các tế bào có khiếm khuyết trong nhân-cytoskeleton và khi ức chế khả năng co bóp dựa trên actomyosin. Tóm lại, các quan sát của chúng tôi cho thấy rằng nhân là không cần thiết cho quá trình cực hóa và di chuyển trong 1D và 2D nhưng rất quan trọng cho các phản ứng cơ học của tế bào.
Từ khóa
Tài liệu tham khảo
Alam, 2015, The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts, J. Cell Sci., 128, 1901, 10.1242/jcs.161703
Arsenovic, 2016, Nesprin-2G, a Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension, Biophys. J., 110, 34, 10.1016/j.bpj.2015.11.014
Azioune, 2010, Protein micropatterns: A direct printing protocol using deep UVs, Methods Cell Biol., 97, 133, 10.1016/S0091-679X(10)97008-8
Bangasser, 2017, Shifting the optimal stiffness for cell migration, Nat. Commun., 8, 15313, 10.1038/ncomms15313
Bastounis, 2014, Both contractile axial and lateral traction force dynamics drive amoeboid cell motility, J. Cell Biol., 204, 1045, 10.1083/jcb.201307106
Borrego-Pinto, 2012, Samp1 is a component of TAN lines and is required for nuclear movement, J. Cell Sci., 125, 1099, 10.1242/jcs.087049
Broers, 2004, Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies, Hum. Mol. Genet., 13, 2567, 10.1093/hmg/ddh295
Case, 2015, Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch, Nat. Cell Biol., 17, 955, 10.1038/ncb3191
Chambers, 1931, Micro-Operations on Cells in Tissue Cultures, Proc. R. Soc. Lond., B., 109, 380, 10.1098/rspb.1931.0090
Chan, 2008, Traction dynamics of filopodia on compliant substrates, Science., 322, 1687, 10.1126/science.1163595
Chan, 2014, LKB1 loss in melanoma disrupts directional migration toward extracellular matrix cues, J. Cell Biol., 207, 299, 10.1083/jcb.201404067
Chancellor, 2010, Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation, Biophys. J., 99, 115, 10.1016/j.bpj.2010.04.011
Crisp, 2006, Coupling of the nucleus and cytoplasm: role of the LINC complex, J. Cell Biol., 172, 41, 10.1083/jcb.200509124
Denais, 2016, Nuclear envelope rupture and repair during cancer cell migration, Science., 352, 353, 10.1126/science.aad7297
Doyle, 2009, One-dimensional topography underlies three-dimensional fibrillar cell migration, J. Cell Biol., 184, 481, 10.1083/jcb.200810041
Doyle, 2015, Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions, Nat. Commun., 6, 8720, 10.1038/ncomms9720
DuFort, 2011, Balancing forces: architectural control of mechanotransduction, Nat. Rev. Mol. Cell Biol., 12, 308, 10.1038/nrm3112
Elosegui-Artola, 2016, Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity, Nat. Cell Biol., 18, 540, 10.1038/ncb3336
Elosegui-Artola, 2017, Force triggers YAP nuclear entry by regulating transport across nuclear pores, Cell., 171, 1397, 10.1016/j.cell.2017.10.008
Engvall, 1977, Binding of soluble form of fibroblast surface protein, fibronectin, to collagen, Int. J. Cancer., 20, 1, 10.1002/ijc.2910200102
Euteneuer, 1984, Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules, Nature., 310, 58, 10.1038/310058a0
Euteneuer, 1992, Mechanism of centrosome positioning during the wound response in BSC-1 cells, J. Cell Biol., 116, 1157, 10.1083/jcb.116.5.1157
Folker, 2011, Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement, Proc. Natl. Acad. Sci. USA., 108, 131, 10.1073/pnas.1000824108
Fridolfsson, 2010, Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei, J. Cell Biol., 191, 115, 10.1083/jcb.201004118
Goldman, 1973, Preservation of normal behavior by enucleated cells in culture, Proc. Natl. Acad. Sci. USA., 70, 750, 10.1073/pnas.70.3.750
Goldstein, 1960, Nuclear-cytoplasmic relationship in human cells in tissue culture, Exp. Cell Res., 19, 332, 10.1016/0014-4827(60)90012-4
Gomes, 2005, Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells, Cell., 121, 451, 10.1016/j.cell.2005.02.022
Graham, 2016, Mechanotransduction and nuclear function, Current Opinion in Cell Biology, 40, 98, 10.1016/j.ceb.2016.03.006
Guilluy, 2014, Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus, Nat. Cell Biol., 16, 376, 10.1038/ncb2927
Gupton, 2006, Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration, Cell., 125, 1361, 10.1016/j.cell.2006.05.029
Hale, 2008, Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models, Biophys. J., 95, 5462, 10.1529/biophysj.108.139428
Hale, 2011, SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization, J. Cell Sci., 124, 4267, 10.1242/jcs.091231
Haque, 2006, SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton, Mol. Cell. Biol., 26, 3738, 10.1128/MCB.26.10.3738-3751.2006
Harada, 2014, Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival, J. Cell Biol., 204, 669, 10.1083/jcb.201308029
Ho, 2013, Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics, Nature., 497, 507, 10.1038/nature12105
Jurado, 2005, Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin, Mol. Biol. Cell., 16, 507, 10.1091/mbc.E04-10-0860
Khatau, 2009, A perinuclear actin cap regulates nuclear shape, Proc. Natl. Acad. Sci. USA., 106, 19017, 10.1073/pnas.0908686106
Kim, 2012, Actin cap associated focal adhesions and their distinct role in cellular mechanosensing, Sci. Rep., 2, 555, 10.1038/srep00555
Lammerding, 2006, Lamins A and C but not lamin B1 regulate nuclear mechanics, J. Biol. Chem., 281, 25768, 10.1074/jbc.M513511200
Lang, 2015, Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks, Acta Biomater., 13, 61, 10.1016/j.actbio.2014.11.003
Lauffenburger, 1996, Cell migration: a physically integrated molecular process, Cell., 84, 359, 10.1016/S0092-8674(00)81280-5
Lee, 2007, Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration, Biophys. J., 93, 2542, 10.1529/biophysj.106.102426
Li, 2001, Integrin and FAK-mediated MAPK activation is required for cyclic strain mitogenic effects in Caco-2 cells, Am. J. Physiol. Gastrointest. Liver Physiol., 280, G75, 10.1152/ajpgi.2001.280.1.G75
Lombardi, 2011, The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton, J. Biol. Chem., 286, 26743, 10.1074/jbc.M111.233700
Luxton, 2011, Orientation and function of the nuclear-centrosomal axis during cell migration, Curr. Opin. Cell Biol., 23, 579, 10.1016/j.ceb.2011.08.001
Luxton, 2010, Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement, Science., 329, 956, 10.1126/science.1189072
Mandal, 2012, Thermoresponsive micropatterned substrates for single cell studies, PLoS One., 7, e37548, 10.1371/journal.pone.0037548
Mandal, 2014, Cell dipole behaviour revealed by ECM sub-cellular geometry, Nat. Commun., 5, 5749, 10.1038/ncomms6749
Mason, 2013, Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior, Acta Biomater., 9, 4635, 10.1016/j.actbio.2012.08.007
Meili, 2010, Myosin II is essential for the spatiotemporal organization of traction forces during cell motility, Mol. Biol. Cell., 21, 405, 10.1091/mbc.E09-08-0703
Metzger, 2012, MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function, Nature., 484, 120, 10.1038/nature10914
Nery, 2008, TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton, J. Cell Sci., 121, 3476, 10.1242/jcs.029454
Padmakumar, 2005, The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope, J. Cell Sci., 118, 3419, 10.1242/jcs.02471
Pathak, 2012, Independent regulation of tumor cell migration by matrix stiffness and confinement, Proc. Natl. Acad. Sci. USA., 109, 10334, 10.1073/pnas.1118073109
Pelham, 1997, Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. USA., 94, 13661, 10.1073/pnas.94.25.13661
Petrie, 2014, Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix, Science., 345, 1062, 10.1126/science.1256965
Petrie, 2017, Activating the nuclear piston mechanism of 3D migration in tumor cells, J. Cell Biol., 216, 93, 10.1083/jcb.201605097
Peyton, 2005, Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion, J. Cell. Physiol., 204, 198, 10.1002/jcp.20274
Piel, 2000, The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells, J. Cell Biol., 149, 317, 10.1083/jcb.149.2.317
Plotnikov, 2012, Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration, Cell., 151, 1513, 10.1016/j.cell.2012.11.034
Raab, 2012, Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain, J. Cell Biol., 199, 669, 10.1083/jcb.201205056
Raab, 2016, ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death, Science., 352, 359, 10.1126/science.aad7611
Ridley, 2003, Cell migration: integrating signals from front to back, Science., 302, 1704, 10.1126/science.1092053
Rommerswinkel, 2014, Analysis of cell migration within a three-dimensional collagen matrix, J. Vis. Exp., 92, e51963
Roux, 2009, Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization, Proc. Natl. Acad. Sci. USA., 106, 2194, 10.1073/pnas.0808602106
Shaw, 1977, Movement and extension of isolated growth cones, Exp. Cell Res., 104, 55, 10.1016/0014-4827(77)90068-4
Stewart, 2015, Nuclear-cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions, J. Cell Biol., 209, 403, 10.1083/jcb.201502024
Sunyer, 2016, Collective cell durotaxis emerges from long-range intercellular force transmission, Science., 353, 1157, 10.1126/science.aaf7119
Swift, 2013, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation, Science., 341, 1240104, 10.1126/science.1240104
Thakar, 2017, Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA, Mol. Biol. Cell., 28, 182, 10.1091/mbc.e16-06-0467
Théry, 2006, Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity, Proc. Natl. Acad. Sci. USA., 103, 19771, 10.1073/pnas.0609267103
Uetrecht, 2009, Golgi polarity does not correlate with speed or persistence of freely migrating fibroblasts, Eur. J. Cell Biol., 88, 711, 10.1016/j.ejcb.2009.08.001
Uzer, 2015, Cell mechanosensitivity to extremely low magnitude signals is enabled by a LINCed nucleus, Stem Cells., 33, 2063, 10.1002/stem.2004
van Loosdregt, 2017, Lmna knockout mouse embryonic fibroblasts are less contractile than their wild-type counterparts, Integr. Biol., 9, 709, 10.1039/C7IB00069C
Verkhovsky, 1999, Self-polarization and directional motility of cytoplasm, Curr. Biol., 9, 11, 10.1016/S0960-9822(99)80042-6
Wang, 2009, Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol., 10, 75, 10.1038/nrm2594
Wigler, 1975, A preparative method for obtaining enucleated mammalian cells, Biochem. Biophys. Res. Commun., 63, 669, 10.1016/S0006-291X(75)80436-0
Wolf, 2013, Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J. Cell Biol., 201, 1069, 10.1083/jcb.201210152
Wu, 2012, Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis, Cell., 148, 973, 10.1016/j.cell.2011.12.034