Các yếu tố kích thích và ức chế: một mô hình tích hợp và đơn giản cho chức năng của chúng
Tóm tắt
Các yếu tố DNA điều hòa như các yếu tố kích thích, ức chế và chạy ngăn cách được nhúng trong bộ gen của động vật bậc cao, và chúng kiểm soát sự biểu hiện gen trong quá trình phát triển. Mặc dù chúng thực hiện các vai trò khác nhau, nhưng chúng chia sẻ các đặc tính cụ thể. Trong bài viết này, chúng tôi thảo luận một số ví dụ và đề xuất một mô hình tiết kiệm cho chức năng của chúng. Tất cả đều là các đơn vị phiên mã liên kết các nhà phối hợp mục tiêu gần hoặc xa với các điểm nóng phiên mã (hay còn gọi là 'nhà máy').
Từ khóa
Tài liệu tham khảo
Knoch TA, Göker M, Lohner R, Abuseiris A, Grosveld FG: Fine-structured multi-scaling long-range correlations in completely sequenced genomes: features, origin, and classification. Eur Biophys J. 2009, 38: 757-779.
Bulger M, Groudine M: Functional and mechanistic diversity of distal transcription enhancers. Cell. 2011, 144: 327-339. A published erratum appears in Cell 2011, 144:825
Maeda RK, Karch F: Gene expression in time and space: additive vs hierarchical organization of cis-regulatory regions. Curr Opin Genet Dev. 2011, 21: 187-193.
Yang J, Corces VG: Chromatin insulators: a role in nuclear organization and gene expression. Adv Cancer Res. 2011, 110: 43-76.
Cremer T, Cremer C: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001, 2: 292-301.
Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJM, Grosveld FG, Knoch TA, Murre C: The three-dimensional structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell. 2008, 133: 265-279.
Knoch TA: Towards a holistic understanding of the human genome by determination and integration of its sequential and three-dimensional organization. High Performance Computing in Science and Engineering 2003. Edited by: Krause E, Jäger W, Resch M. 2003, Berlin: Springer, 421-440.
Rauch J, Knoch TA, Solovei I, Teller K, Stein S, Buiting K, Horsthemke B, Langowski J, Cremer T, Hausmann M, Cremer C: Light optical precision measurements of the active and inactive Prader-Willi syndrome imprinted regions in human cell nuclei. Differentiation. 2008, 76: 66-82.
Knoch TA, Münkel C, Langowski J: Three-dimensional organization of chromosome territo-ries in the human interphase nucleus. High Performance Computing in Science and Engineering 1999. Edited by: Krause E, Jäger W. 2000, Berlin: Springer, 229-238.
Knoch TA: Approaching the Three-Dimensional Organization of the Human Genome. 2002, Mannheim, Germany: TAK Press, [http://archiv.ub.uni-heidelberg.de/volltextserver/frontdoor.php?source_opus=3105]3
Raab JR, Kamakaka RT: Insulators and promoters: closer than we think. Nat Rev Genet. 2010, 11: 439-446.
de Laat W, Grosveld F: Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 2003, 11: 447-459.
Sutherland H, Bickmore WA: Transcription factories: gene expression in unions?. Nat Rev Genet. 2009, 10: 457-466.
Chakalova L, Fraser P: Organization of transcription. Cold Spring Harb Perspect Biol. 2010, 2: a000729.
Banerji J, Rusconi S, Schaffner W: Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell. 1981, 27: 299-308.
Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W: Looping and interaction between hypersensitive sites in the active β-globin locus. Mol Cell. 2002, 10: 1453-1465.
Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R: Interchromosomal interactions and olfactory receptor choice. Cell. 2006, 126: 403-413.
Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB: Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet. 2008, 4: e1000106.
He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q, Zhang Y, Xu K, Ni M, Lupien M, Mieczkowski P, Lieb JD, Zhao K, Brown M, Liu XS: Nucleosome dynamics define transcriptional enhancers. Nat Genet. 2010, 42: 343-347.
Zentner GE, Tesar PJ, Scacheri PC: Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 2011, 21: 1273-1283.
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009, 459: 108-112.
De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G: A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010, 8: e1000384.
Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME: Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010, 465: 182-187.
Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P: Long-range chromatin regulatory interactions in vivo. Nat Genet. 2002, 32: 623-626.
Drissen R, Palstra RJ, Gillemans N, Splinter E, Grosveld F, Philipsen S, de Laat W: The active spatial organization of the β-globin locus requires the transcription factor EKLF. Genes Dev. 2004, 18: 2485-2490.
Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R: Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010, 143: 46-58.
Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Fu XD: Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011, 474: 390-394.
Ling J, Ainol L, Zhang L, Yu X, Pi W, Tuan D: HS2 enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J Biol Chem. 2004, 279: 51704-51713.
Ling J, Baibakov B, Pi W, Emerson BM, Tuan D: The HS2 enhancer of the β-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a cis-linked globin promoter. J Mol Biol. 2005, 350: 883-896.
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007, 129: 1311-1323.
Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009, 106: 11667-11672.
Ong CT, Corces VG: Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet. 2011, 12: 283-293.
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY: A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011, 472: 120-124.
Li LM, Arnosti DN: Long- and short-range transcriptional repressors induce distinct chromatin states on repressed genes. Curr Biol. 2011, 21: 406-412.
Janowski BA, Corey DR: Minireview: Switching on progesterone receptor expression with duplex RNA. Mol Endocrinol. 2010, 24: 2243-2252.
Morris KV, Chan SW, Jacobsen SE, Looney DJ: Small interfering RNA-induced transcriptional gene silencing in human cells. Science. 2004, 305: 1289-1292.
Janowski BA, Huffman KE, Schwartz JC, Ram R, Hardy D, Shames DS, Minna JD, Corey DR: Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat Chem Biol. 2005, 1: 216-222.
Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ, Qu LH: Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS One. 2010, 5: e10563.
Younger ST, Corey DR: Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011, 39: 5682-5691.
Pawlicki JM, Steitz JA: Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol. 2008, 182: 61-76.
Kanhere A, Viiri K, Araújo CC, Rasaiyaah J, Bouwman RD, Whyte WA, Pereira CF, Brookes E, Walker K, Bell GW, Pombo A, Fisher AG, Young RA, Jenner RG: Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell. 2010, 38: 675-688.
Schoenherr CJ, Levorse JM, Tilghman SM: CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet. 2003, 33: 66-69.
Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008, 322: 750-756.
Vernimmen D, Lynch MD, De Gobbi M, Garrick D, Sharpe JA, Sloane-Stanley JA, Smith AJ, Higgs DR: Polycomb eviction as a new distant enhancer function. Genes Dev. 2011, 25: 1583-1588.
Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD: Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol. 2006, 26: 2560-2569.
Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJ, Zhu Y, Kaaij LJ, van Ijcken W, Gribnau J, Heard E, de Laat W: The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 2011, 25: 1371-1383.
Gaszner M, Felsenfeld G: Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet. 2006, 7: 703-713.
Feinberg AP: Phenotypic plasticity and the epigenetics of human disease. Nature. 2007, 447: 433-440.
Chopra VS, Cande J, Hong JW, Levine M: Stalled Hox promoters as chromosomal boundaries. Genes Dev. 2009, 23: 1505-1509.
Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM: CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000, 405: 486-489.
Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M: Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008, 132: 422-433.
Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM: Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008, 451: 796-801.
Bowers SR, Mirabella F, Calero-Nieto FJ, Valeaux S, Hadjur S, Baxter EW, Merkenschlager M, Cockerill PN: A conserved insulator that recruits CTCF and cohesin exists between the closely related but divergently regulated interleukin-3 and granulocyte-macrophage colony-stimulating factor genes. Mol Cell Biol. 2009, 29: 1682-1693.
Zhou X, Weatherford ET, Liu X, Born E, Keen HL, Sigmund CD: Dysregulated human renin expression in transgenic mice carrying truncated genomic constructs: evidence supporting the presence of insulators at the renin locus. Am J Physiol Renal Physiol. 2008, 295: F642-653.
Komura J, Ikehata H, Ono T: Chromatin fine structure of the c-MYC insulator element/DNase I-hypersensitive site I is not preserved during mitosis. Proc Natl Acad Sci USA. 2007, 104: 15741-15746.
Nègre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RA, Stein L, Henikoff S, Kellis M, White KP: A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet. 2010, 6: e1000814.
Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, Lei EP: RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev. 2011, 25: 1686-1701.
Kolesky SE, Ouhammouch M, Geiduschek EP: The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4. J Mol Biol. 2002, 321: 767-784.
Bulger M, Groudine M: Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 1999, 13: 2465-2477.
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet. 2007, 8: 104-115.
Cook PR: Nongenic transcription, gene regulation and action at a distance. J Cell Sci. 2003, 116: 4483-4491.
Malik S, Roeder RG: The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet. 2010, 11: 761-772.
Apostolou E, Thanos D: Virus Infection Induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell. 2008, 134: 85-96.
Simonis M, Kooren J, de Laat W: An evaluation of 3C-based methods to capture DNA interactions. Nat Methods. 2007, 4: 895-901.
Gohl D, Aoki T, Blanton J, Shanower G, Kappes G, Schedl P: Mechanism of chromosomal boundary action: roadblock, sink, or loop?. Genetics. 2011, 187: 731-748.
Comet I, Schuettengruber B, Sexton T, Cavalli G: A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci USA. 2011, 108: 2294-2299.
Jing H, Vakoc CR, Ying L, Mandat S, Wang H, Zheng X, Blobel GA: Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol Cell. 2008, 29: 232-242.
Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W: CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 2006, 20: 2349-2354.
Majumder P, Gomez JA, Chadwick BP, Boss JM: The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. J Exp Med. 2008, 205: 785-798.
Soler E, Andrieu-Soler C, de Boer E, Bryne JC, Thongjuea S, Stadhouders R, Palstra RJ, Stevens M, Kockx C, van Ijcken W, Hou J, Steinhoff C, Rijkers E, Lenhard B, Grosveld F: The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev. 2010, 24: 277-289.
Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, Krueger C, Reik W, Peters JM, Murrell A: Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 2009, 5: e1000739.
Spilianakis CG, Flavell RA: Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol. 2004, 5: 1017-1027.
Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA: Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1. Mol Cell. 2005, 17: 453-462.
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009, 326: 289-293.
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet. 2006, 38: 1348-1354.
Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P: Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004, 36: 1065-1071.
Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei CL, Ruan Y, Bieker JJ, Fraser P: Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet. 2010, 42: 53-61.
Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, Dekker J, Marti-Renom MA: The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol. 2011, 18: 107-114.
Xu M, Cook PR: The role of specialized transcription factories in chromosome pairing. Biochim Biophys Acta. 2008, 1783: 2155-2160.
Papantonis A, Cook PR: Genome architecture and the role of transcription. Curr Opin Cell Biol. 2010, 22: 271-276.
Pombo A, Cuello P, Schul W, Yoon JB, Roeder RG, Cook PR, Murphy S: Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. EMBO J. 1998, 17: 1768-1778.
Pombo A, Jackson DA, Hollinshead M, Wang Z, Roeder RG, Cook PR: Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J. 1999, 18: 2241-2253.
Papantonis A, Larkin JD, Wada Y, Ohta Y, Ihara S, Kodama T, Cook PR: Active RNA polymerases: mobile or immobile molecular machines?. PLoS Biol. 2010, 8: e1000419.
Melnik S, Deng B, Papantonis A, Baboo S, Carr IM, Cook PR: The proteomes of transcription factories containing RNA polymerases I, II or III. Nat Methods. 2011, 8: 963-968.
Sikorska M, Sandhu JK, Deb-Rinker P, Jezierski A, LeBlanc J, Charlebois C, Ribecco-Lutkiewicz M, Bani-Yaghoub M, Walker PR: Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. J Neurosci Res. 2008, 86: 1680-1693.
Deshane J, Kim J, Bolisetty S, Hock TD, Hill-Kapturczak N, Agarwal A: Sp1 regulates chromatin looping between an intronic enhancer and distal promoter of the human heme oxygenase-1 gene in renal cells. J Biol Chem. 2010, 285: 16476-16486.
Chung JH, Whiteley M, Felsenfeld G: A 5' element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell. 1993, 74: 505-514.
Antes TJ, Namciu SJ, Fournier RE, Levy-Wilson B: The 5' boundary of the human apolipoprotein B chromatin domain in intestinal cells. Biochemistry. 2001, 40: 6731-6742.
Filippova GN, Thienes CP, Penn BH, Cho DH, Hu YJ, Moore JM, Klesert TR, Lobanenkov VV, Tapscott SJ: CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet. 2001, 28: 335-343.
Petrykowska HM, Vockley CM, Elnitski L: Detection and characterization of silencers and enhancer-blockers in the greater CFTR locus. Genome Res. 2008, 18: 1238-1246.
Valadez-Graham V, Razin SV, Recillas-Targa F: CTCF-dependent enhancer blockers at the upstream region of the chicken α-globin gene domain. Nucleic Acids Res. 2004, 32: 1354-1362.
Iborra FJ, Pombo A, McManus J, Jackson DA, Cook PR: The topology of transcription by immobilized polymerases. Exp Cell Res. 1996, 229: 167-173.
Pombo A, Hollinshead M, Cook PR: Bridging the resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy. J Histochem Cytochem. 1999, 47: 471-480.
Faro-Trindade I, Cook PR: A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol Biol Cell. 2006, 17: 2910-2920.